欢迎来到天天文库
浏览记录
ID:28142000
大小:518.50 KB
页数:10页
时间:2018-12-08
《计算机图形中的混叠效果_面向导航应用的一种新型抗混叠技术.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、计算机图形中的混叠效果_面向导航应用的一种新型抗混叠技术率低于奈奎斯特频率时,那么从采样点恢复恢复出的信号是与原始信号不同的。原始信号与重构信号体现出的差别,这个效果成为“混叠”。 这里我们将与大家讨论在计算机图形中混叠效果最普遍的两种体现。第一种就是锯齿(如图1所示),主要就是在斜直线的方向上呈现锯齿状的阶梯。这是在显卡光栅渲染阶段像素之间产生的。 图1:抗混叠效果对比(左:禁止,右:允许) 第二个是采样混叠。当较高频率(快速变化)的纹理用于渲染远景的一些对象时,比如图2所示的棋盘模式,我们能够清晰的看到一些混叠效果,称为云纹图案模式。 计算机图形中的混叠效果_面向导航
2、应用的一种新型抗混叠技术率低于奈奎斯特频率时,那么从采样点恢复恢复出的信号是与原始信号不同的。原始信号与重构信号体现出的差别,这个效果成为“混叠”。 这里我们将与大家讨论在计算机图形中混叠效果最普遍的两种体现。第一种就是锯齿(如图1所示),主要就是在斜直线的方向上呈现锯齿状的阶梯。这是在显卡光栅渲染阶段像素之间产生的。 图1:抗混叠效果对比(左:禁止,右:允许) 第二个是采样混叠。当较高频率(快速变化)的纹理用于渲染远景的一些对象时,比如图2所示的棋盘模式,我们能够清晰的看到一些混叠效果,称为云纹图案模式。 图2:纹理混叠:双线性滤波(左)和三线性滤波-MIP贴图(右
3、) 目前有多种算法能够降低这些可见的混叠现象,甚至消除锯齿效果。然而这些算法会占用相当一部分的系统性能,当然这与你使用的硬件平台也有关系。 ·超级采样抗混叠(SSAA)技术:这是一种比较“暴力”的方式,首先以较高的分别率(最终所期望的整数倍x2、x4)来渲染整个场景,然后对整个帧缓冲区进行采样最终生成我们需要的最终分辨率。最终效果显示这种方法在质量上有保证,而且优化了锯齿和纹理采样,但是这个技术的实现成本代价很大。渲染的代价——包括光栅渲染、分片渲染以及相应的带宽——一般都是分辨率的平方,比如x2SSAA对应的代价就是x4,x4SSAA对应的代价就是x16。 ·多采样抗混叠(M
4、SAA)技术:这个方法会增加每个像素点的采样数量,将渲染的图像添加到缓冲区,并且能够存储每个像素点的多个采样值。然后通过缓冲区输出符合我们所期望的图像分辨率。这种技术在PowerVR硬件平台上非常高效而且全部是在芯片内部解决,节省了内存带宽。MSAA能够优化锯齿但是对于采样效果无能为力。 ·基于着色器(Shader)技术如快速近似抗混叠(FXAA)或亚像素形态抗混叠(SMAA),这两种方式都是采用分析来检测和模糊锐利的几何特性。同时也会在显示环节采用后处理算法,付出的代价一般都是固定的(单个全屏幕通过)但是会需要更大的存储带宽,显然这对于移动和嵌入式设备来讲是非常宝贵的。梯度线抗混
5、叠技术简介 GerryRapTIs是PowerVRSDK开发团队的主管,是他开发的GRLAA技术来改进我们正在设计的导航应用演示Demo。 GRLAA技术大幅度提升了道路几何图形边沿的可视化质量,所需要的计算成本也相对较低。除此以外这使得没必要再添加道路轮廓了。轮廓能够提升道路边沿的可视化程度,方便用户识别,更加清楚的区分道路边界。 图3:抗混叠道路图形轮廓 这个方法背后的一般想法就是渲染道路的不透明区,然后逐渐提升透明度,即在道路几何图形的上面或者边缘提升像素的百分比。 任何分片的alpha通道都是基于两个值。第一个是分片区与道路边沿的距离,第二个是这个距离的变化率,
6、即我们常说的梯度,或者更正式的来说就是距离的偏导数。 每个分片的RGB颜色数值是通过计算(0,0,0)三者之间的差值来确定的,生成一个固定的黑色轮廓(或者其他颜色的轮廓)和道路的平面颜色,然后将统一数据传递给分片的着色器。所有这些计算都是基于差值t,这个值时通过相对距离和变化率来计算确定的。后面的内容会更加详细的介绍如何推算这些数值,以及这些数值对GRLAA技术的重要性。 这个算法目前的形式可能没有太大的价值,只适用于一些具有已知宽度的几何图形,比如一条路或者一条线等。GRLAA技术详细分析 为了确定正确的融合水平,这个算法需要知道距离道路边沿的距离,因为这会影响融合的强度。这
7、意味着数据集中每个几何顶点需要附加额外的顶点补偿数据,必须是某个两个常量值之一,即-1或1。这个赋值应该在奇数和偶数之间变换,这表示道路的一侧会接收基础值-1而另一侧则对应基础值1。这些数据会作为几何顶点数据上传给图形卡硬件,经过分片着色器计算才能确定最终的alpha通道值。 给每个顶点赋值的基础值按道路的两侧来分是不同的,比如左手侧和右手侧。因为这些顶点数据会被分片着色器用于计算,它们自动会被硬件进行插值转换。 图4:代表几何的基础属性值 插值
此文档下载收益归作者所有