物联网安全如何从机器学习中受益?.doc

物联网安全如何从机器学习中受益?.doc

ID:28114015

大小:93.00 KB

页数:6页

时间:2018-12-08

物联网安全如何从机器学习中受益?.doc_第1页
物联网安全如何从机器学习中受益?.doc_第2页
物联网安全如何从机器学习中受益?.doc_第3页
物联网安全如何从机器学习中受益?.doc_第4页
物联网安全如何从机器学习中受益?.doc_第5页
资源描述:

《物联网安全如何从机器学习中受益?.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、物联网安全如何从机器学习中受益?  计算机和移动设备运行丰富的操作系统时,有大量的安全解决方案和加密协议可以保护他们连接到互联网时受到众多威胁。物联网并不是这样的情况。  目前有数十亿的物联网设备在使用中,其中大部分具有低端处理能力和存储容量,且不具有安全解决方案扩展的能力。然而,它们连接到互联网时处于一个非常恶劣的环境。  基本上,这就像没有穿铠甲去战场。  这就是为什么新的物联网漏洞不断浮出水面,每天有无数的物联网设备遭到黑客、僵尸网络和其他恶行的攻击。一个恶意黑客只需要几分钟就能在搜索引擎Shodan上找到成千上万的易受攻击的设备,缺乏免疫的物

2、联网设备经常成为网络中更具危险的黑客的滩头阵地。底线是,我们有太多的智能设备在保护自己(和我们)避免网络攻击时本身太迟钝。  但是这个漏洞可以通过机器学习和分析来弥补,特别是通过开发人员和制造商将变得更容易。    物联网设备产生大量数据,机器学习被用来分析和阅读数据,以帮助提高效率和客户服务,并降低成本和能源消耗。同样的设备可以在安全相关的用例中使用,如确定安全设备的行为和一般的使用模式,从而有助于发现和阻止异常活动和潜在的有害行为。  目前,一些高科技公司正在借鉴这一方法,提供增强物联网的安全性的解决方案,特别是在没有定义安全标准和实践的智能家庭

3、。    利用云计算来巩固情报  “目前,机器学习与行为分析是检测一切的最大的发展趋势之一,”在网络安全科技公司Bitdefender的首席安全研究员亚历巴兰说道。然而,他阐述了机器学习仍然有很长的路要走,需要有“大量的关于开发,实施和测试算法的研究和创新。”  BitDefender的方法是聚集成一个依靠产品的所有终端的云服务器数据库;输入数据进行分析以确定模式和现场恶意行为。“你收集所有的流量,”巴兰说,“通过清理和规范它,学习它,看看设备与什么服务器交流,和其他什么设备交流,他们通常怎样与互联网和设备之间进行连接,并且选择出异常流量。”  机器

4、学习是非常有前途的,但它仍然是处于起步阶段,还有很长的路要走。  Bitdefender使用云智能与模式识别,通过整套端点安全软件和硬件的本地网络分析,来控制家庭网络的互联网流量和恶意URL、恶意软件下载和可疑的数据包的块连接。云服务的使用使公司能够带来企业级智慧和消费者空间的保护。    人体辅助机器学习  “机器学习是物联网安全的人工智能发展的一个关键组成部分,”PatternEx的联合创始人兼首席执行官UdayVeeramachaneni说道。“问题是,物联网将大规模地分布,如果有一个攻击,你必须作出实时反应。”  依靠机器学习和行为分析的大多

5、数系统,将收集有关网络和连接设备的信息,并随后寻求非正常的一切状况。这种原始方法的问题是,它产生太多的错误警告和误报。  PatternEx建议的方法是开发一个解决方案,包括机器学习和增强它与人类分析师的见解以便检测更大的攻击。“实时解决这一问题的方法是创建一个学习系统,该系统采用人们反馈的这些异常值和要求,“Veeramachaneni解释说。“只有人类才能区分恶意和良性,这些反馈返回到系统中并创建预测模型,通过模型可以模仿人类的判断-但这需要在巨大的规模和实时的条件下才行。”  这是与物联网生态系统特别相关的,其中涉及大量的设备,对产生的海量数据

6、进行实时分析超出了人类的能力。  PatternEx采用机器学习算法进行异常检测,并训练所述模型以便在实时方面更准确。训练是由任何一个可以发现新的攻击发生的分析师完成。该系统产生有潜在的攻击的事件。分析师调查事件,并确定系统的评估是否正确。该系统从经验中学习,并在下一次作出更准确的决策。  “这种模式有助于提高威胁检测的准确性,随着时间的推移减少误报的数量,”Veeramachaneni说。    利用物联网设备的有限功能  物联网设备的设计是为了执行一组有限的功能。因此,有了机器学习和足够的数据,它识别异常行为就变得非常容易。这个想法被初创科技公司

7、的Dojo-Labs实验室用来创建智能家居物联网的安全解决方案。  “当涉及到物联网设备,它们被设计来做一个非常,非常具体的功能,”该公司联合创始人兼首席执行官YossiATIas说。“因此,假设我们有很多用户使用相同的摄像头或相同的智能电视或相同的智能报警或智能锁,没有真正的原因表明一个设备会表现出不同于其他的行为,因为他们都运行相同的软件,而这不是用户可以改变的。”  Dojo-Labs实验室的方法涉及从不同的端点收集元数据和定义每个设备类型的行为范围,以便能够发现并阻止恶意行为。正如所有的解决方案涉及机器学习,Dojo-Labs实验室的模型由于

8、收集越来越多的客户数据而改进了。  该解决方案包括一个安装在家庭网络中的鹅卵石状设备,允许用户控制设备和监控

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。