《传染病模型》ppt课件

《传染病模型》ppt课件

ID:27547820

大小:308.00 KB

页数:13页

时间:2018-12-01

《传染病模型》ppt课件_第1页
《传染病模型》ppt课件_第2页
《传染病模型》ppt课件_第3页
《传染病模型》ppt课件_第4页
《传染病模型》ppt课件_第5页
资源描述:

《《传染病模型》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、动态模型描述对象特征随时间(空间)的演变过程分析对象特征的变化规律预报对象特征的未来性态研究控制对象特征的手段根据函数及其变化率之间的关系确定函数微分方程建模根据建模目的和问题分析作出简化假设按照内在规律或用类比法建立微分方程传染病模型问题描述传染病的传播过程分析受感染人数的变化规律预报传染病高潮到来的时刻预防传染病蔓延的手段按照传播过程的一般规律,用机理分析方法建立模型已感染人数(病人)i(t)每个病人每天有效接触(足以使人致病)人数为模型1假设若有效接触的是病人,则不能使病人数增加必须区分已感染者(病人)和未感染者(健康人)建模?模型

2、2区分已感染者(病人)和未感染者(健康人)假设1)总人数N不变,病人和健康人的比例分别为2)每个病人每天有效接触人数为,且使接触的健康人致病建模~日接触率SI模型模型21/2tmii010ttm~传染病高潮到来时刻(日接触率)tmLogistic模型病人可以治愈!?t=tm,di/dt最大模型3传染病无免疫性——病人治愈成为健康人,健康人可再次被感染增加假设SIS模型3)病人每天治愈的比例为~日治愈率建模~日接触率1/~感染期~一个感染期内每个病人的有效接触人数,称为接触数。模型3i0i0接触数=1~阈值感染期内有效

3、接触感染的健康者人数不超过病人数1-1/i0模型2(SI模型)如何看作模型3(SIS模型)的特例idi/dt01>10ti>11-1/i0t1di/dt<0模型4传染病有免疫性——病人治愈后即移出感染系统,称移出者SIR模型假设1)总人数N不变,病人、健康人和移出者的比例分别为2)病人的日接触率,日治愈率,接触数=/建模需建立的两个方程模型4SIR模型无法求出的解析解在相平面上研究解的性质模型4消去dtSIR模型相轨线的定义域相轨线11si0D在D内作相轨线的图形,进行分析si101D模型4SIR模型相轨线及其分析传染

4、病蔓延传染病不蔓延s(t)单调减相轨线的方向P1s0imP1:s0>1/i(t)先升后降至0P2:s0<1/i(t)单调降至01/~阈值P3P4P2S0模型4SIR模型预防传染病蔓延的手段(日接触率)卫生水平(日治愈率)医疗水平传染病不蔓延的条件——s0<1/的估计降低s0提高r0提高阈值1/降低(=/),群体免疫模型4SIR模型被传染人数的估计记被传染人数比例x<

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。