必修3《3.2古典概型》教学设计

必修3《3.2古典概型》教学设计

ID:27473154

大小:51.50 KB

页数:5页

时间:2018-12-04

必修3《3.2古典概型》教学设计_第1页
必修3《3.2古典概型》教学设计_第2页
必修3《3.2古典概型》教学设计_第3页
必修3《3.2古典概型》教学设计_第4页
必修3《3.2古典概型》教学设计_第5页
资源描述:

《必修3《3.2古典概型》教学设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、必修3《3.2古典概型》教学设计一、教学内容分析本节课的内容选自人民教育出版社《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.节古典概型,它在本书中被安排在随机事件的概率之后,几何概型之前。古典概型是一种最基本的概率模型,它引入前,通过实验和观察地方法可以得到一些事件的概率估计值,但这种做法耗时耗力,引入古典概型后避免了大量的重复试验,得到的是概率准确值。古典概率在概率论中占有相当重要的地位,是学习概率必不可少的内容,还可以解释生活中的一些常见问题,在概率论中占有相当重要的地位。本节主要是学习古典概型第一课时。教学过程中让学生通过生活中的

2、一些实例与数学模型理解基本事件的概念和古典概型的两个特征,通过具体的实例来推导古典概型下的概率公式,并通过当堂练习和典型例题加以引申,让学生初步学会把一些实际问题转化为古典概型问题。二、学生情况分析   能力:学生基础较差,只具备了很少的的归纳、猜想能力,数学的应用意识与应用能力方面也很差情感:多数学生对数学学习有一定的兴趣,但是实际学习中还有畏难情绪三、教学指导思想与理论依据:本节课以新课标基本理念为依据按照教学大纲进行设计的,针对学生目前学习情况,挖掘生活中相关的简单问题,想办法激发学生的学习热情,把学习的主动权交给学生,鼓励学生自主探究、合作交流,确实

3、改变学生的学习方式。在具体实施中,我根据学生数学学习的特点,联系学生的学习实际,从最基础讲起,鼓励学生举出生活中的一些实际问题,并进行探讨,使之更容易的理解基本事件的概念和古典概型的两个特征,并推导公式。四、教学目标:知识目标:正确理解基本事件的概念,准确求出基本事件及其个数;能力目标:进一步发展学生类比、归纳、猜想等合情推理能力;情感目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,教学重点:掌握古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否为古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数

4、和试验中基本事件的总数。五、教学过程:采用如下流程: 1、创设情境,提出问题探究:对于下列随机事件,求其概率?(1)考察抛硬币的试验,正面向上的概率为多少? (2)若抛掷一枚骰子,它落地时向上的点数为3的概率是多少?(3)一先一后掷两枚硬币,观察正反面出现的情况,共有几个基本事件?每一个基本事件发生的概率是多少?(4)如图,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环。问命中9环的概率为多少?思考:探究二的第(1)、(2)、(3)题与第(4)题的差别是什么?【设计意图】在探究1的引导下,学生已经发现:求随机

5、事件的概率,可以不通过大量试验,而是通过一次试验中可能出现的结果的分析来求概率。由于前3个问题试验中基本事件出现的可能性是均等的,所以很容易得到答案:(1);(2);(3);而第(4)题学生迟疑了,有些同学发现该试验共有7个基本事件,所以认为答案是。但约一半的同学并不认同,此时我提议大家合作交流,让大家在合作探究的氛围中思考、质疑、倾听、表述。这也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。而思考题的提出让学生从问题的相同点和不同点中找出研究对象的对立统一面,意识到试验中基本事件发生的等可能性的必要性,这能培养学生分析问

6、题,归纳问题的能力。最后学生讨论得到共识:第(4)题由于基本事件发生不是等可能的,所以答案肯定不是,具体概率是多少与第9环所占的面积有关,面积越大,命中的概率就越大,此时学生体验到成功的喜悦。探究二的设计目的是创建与新课内容相关的实验模型,把问题具体化,过渡到新课时自然有序,此时老师一句话即可引导到本节课古典概型的定义上:象探究二(1)(2)(3)中的试验,若出现结果有有限个,且每一个基本事件发生的可能性均等,则称该试验为古典概型。2、概念初步(请学生概括古典概型的两大特征)具备如下特征的试验称为古典概型(classicalprobabilitymodel)

7、(1)有限性:即只有有限个不同的基本事件。(2)等可能性:每个基本事件发生的可能性是均等的。对照探究二,明确两大特征,让学生正确理解概念,走出概念的认识误区,不发生歧义。3、古典概型公式的形成由古典概型概念易得,某一基本事件的概率公式为如下结论1:在基本事件总数为n的古典概型中,每个基本事件发生的概率是。而古典概型中,某随机事件出现的概率公式通过一个思考题引出。思考题:先后投掷两个骰子,点数之和可能为2、3……12,问点数之和为4的概率为多少?【设计意图】该题目考查的问题很多,通过该题目必须使学生明确如下问题:(1)该试验是否为古典概型?学生在理解该问题时存

8、在误区:混淆了随机事件和基本事件的区别。简单地认为点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。