原子吸收光谱分析原理和火焰类型

原子吸收光谱分析原理和火焰类型

ID:27137868

大小:76.50 KB

页数:4页

时间:2018-12-01

原子吸收光谱分析原理和火焰类型_第1页
原子吸收光谱分析原理和火焰类型_第2页
原子吸收光谱分析原理和火焰类型_第3页
原子吸收光谱分析原理和火焰类型_第4页
资源描述:

《原子吸收光谱分析原理和火焰类型》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、原子吸收光谱分析原理和火焰类型原子吸收光谱分析(乂称原于吸收分光光度分析)楚基于从光源辐射出待测元索的特扯光波,通过样品的蒸汽时,被蒸汽屮待测元素的基志原子所吸收,由辐射光波强度减弱的程度,可以求出样品中待测元素的含量。I原子吸收光谱的理论基础1.1原子吸收光谱的产生在原子中,电子按一定的轨道绕原子核旋转,各个屯子的运动状态是由4个量子数来描述。不同S了•数的电了,具冇不同的能S,原于的能S为艽所含电了能S的总和。原了处于完全游离状态吋,具奋最低的能暈,称为基态(E。)。在热能、电能或光能的作用下,基态原于吸收了能聚,最外e的电了产生跃迁,从低能态跃迁到较高能态,它就成为激发态原子

2、。激发态原于(民)很不稳定,当它回到葙态时,这些能虽以热或光的形式辐射;H来,成为发射光谱。其辐射能量大小,用下列公式示:式中h——普朗克常数,其数值为6.626X10-23J•S;八E=Eq-EO=hv=hc/入C光速(3X105km/s);V、入一一分别为发射光的频率和波长;EO、eq—一分别代表基态和激发态原子的能量,它们与原子的结构有关。凼于不同元素的原子结构不所以一种元素的原子只能发射由其己与Eq决定的特定频率的光。这样,每一种元素都有其特征的光谱线。即使同一种元素的原子,它们的Eq也可以不同,也能产生不同的谱线。原子吸收光谱是原于发射光谱的逆过程。某态原子只能吸收频率为

3、(Eq-EO)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素有其特征的吸收光谱线。原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁冋基态时,称为共振跃迁。这种振跃迁所发射的谱线称为井振发射线,勾此过程相反的谱线称为;R•振吸收线。元素的共振吸收线一般冇好多条,艽测定灵敏度也不同。在测定时,一般选川灵敏线,何当被测元素含量较高时,也可采川次灵敏线。1.2吸收强度与分析物质浓度的关系原子蒸气对不同频率的光具柯不同的吸收率,W此,原子蒸气对光的吸收是频率的函数。但是对固定频率的光,原子蒸气对它的吸收是与单位体积中的原

4、子的浓度成正比并符合朗格一比尔定律。当一条频率为u,强度为10的单色光透过长度为L的原子蒸气层后,透射光的强度为lv,令比例常数为Kv,则吸光度A与试样屮基态原子的浓度N。柯如下关系:A=

5、g(IO/l)=KLN在原子吸收光谱法屮,原子池屮激发态的原子和离子数很少,因此蒸气屮的基态原子数H实际上接近于被测元素总的原子数目,与式样中被测元素的浓度C成正比。因此吸光度A与试样中被测元素浓度C的关系如下;A=KC式中K一吸收系数只有当入射光是单色光,上式冰能成立。凼于原子吸收光的频率范围很窄(O.Olnrn以卜*),只奋锐线光源才能满足要求。在原子吸收光谱分析屮,出于存在多种谱线变宽的因

6、素,例如£1然变宽、多普勒(热)变宽、同位素效应、罗兰兹(压力)变宽、场变宽、自吸和自蚀变宽等,引起了发射线扣吸收线变宽,尤以发射线变宽影响最大。谱线变宽能引起校正曲线弯曲,灵敏度下降。减小校正曲线弯曲的儿点措施:(1)选择性能好的空心阴极灯,减少发射线变宽。(2)灯电流不要过高,减少吸变宽。(3)分析元素的浓度不耍过高。(4)对准发射光,使其从吸收层中央穿过。(5)工作吋间不要太长,避免光电倍增管和灯过热。。(6)助燃气体乐力不要过高,可减小压力变宽。2原子化过程原子吸收光谱法釆用的原子化方法主要有火焰法、石墨炉法和氢化物发牛.法。2.I火指原子化在这过程中,大致分为两个主要阶段

7、;Q)从溶液雾化至:蒸发为分了蒸气的过程。主要依赖于雾化器的性能、雾滴人小、溶液性质、火焰温度和溶液的浓度等。(2)从分子蒸气至解离成基态原子的过程。主要依赖于被测物形成分子们键能,同时还与火焰的温度及气份相关。分子的离解能越低,对离解越有利,就原子吸收光谱分析而言,解高能小于3.5eV的分子,界易被解离,当人于5eV时,解离就比较困难。1.2石墨炉原子化样品置于石墨管内,川大电流通过石墨管,产生3OOCTC以K的高温,使样品蒸发和原子化。为了阻止石墨管在高温氧化,在石墨管内、外部川惰性气体保护。石S炉加温阶段一般可分为:(1)干燥。此阶段是将溶剂蒸发掉,加热的温度控制在溶剂的沸点

8、左心,但应避免暴沸和发生溅射,否则会严重影响分析精度和灵敏度。(2)灰化。这足比较東要的加热阶段。其目的是在保证被铡元素没有明显损失的前提下,将样品加热到尽可能高的温度,破坏或蒸发掉葙体,减少原了•化阶段可能遇到的元素间干扰,以及光散射或分子吸收引起的背景吸收,同时使被铡院素变为氣化物或艽他类型物。(3)原子化。在高温下,把被测元素的氧化物或其它类型物热解和还原(主要的)成tl由原子葱气。2,3氢化物发生法在酸性介质中,以硼氢化钾(KBH4)作为还原剂,使锗、锡、铅、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。