2005_2018浙江高考理科数学历年真题之解析几何大题[教师版]

2005_2018浙江高考理科数学历年真题之解析几何大题[教师版]

ID:27103662

大小:1.30 MB

页数:16页

时间:2018-12-01

2005_2018浙江高考理科数学历年真题之解析几何大题[教师版]_第1页
2005_2018浙江高考理科数学历年真题之解析几何大题[教师版]_第2页
2005_2018浙江高考理科数学历年真题之解析几何大题[教师版]_第3页
2005_2018浙江高考理科数学历年真题之解析几何大题[教师版]_第4页
2005_2018浙江高考理科数学历年真题之解析几何大题[教师版]_第5页
资源描述:

《2005_2018浙江高考理科数学历年真题之解析几何大题[教师版]》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、.WORD格式整理..浙江高考历年真题之解析几何大题(教师版)1、(2005年)如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴的长为4,左准线与x轴的交点为M,

2、MA1

3、∶

4、A1F1

5、=2∶1.(Ⅰ)求椭圆的方程;(Ⅱ)若直线:x=m(

6、m

7、>1),P为上的动点,使最大的点P记为Q,求点Q的坐标(用m表示).解析:(Ⅰ)设椭圆方程为,半焦距为,则 ,,(Ⅱ)设,当时,;当时,,只需求的最大值即可设直线的斜率,直线的斜率,当且仅当时,最大,2、(2006年)如图,椭圆=1(a>b>0)与过点A(2,0)、B(0,1)的直线有且只

8、有一个公共点T,且椭圆的离心率e=。(Ⅰ)求椭圆方程;(Ⅱ)设F、F分别为椭圆的左、右焦点,M为线段AF2的中点,求证:∠ATM=∠AFT。..专业知识分享...WORD格式整理..解析:(Ⅰ)过A、B的直线方程为因为由题意得有惟一解,即有惟一解,所以故=0又因为e,即,所以从而得 故所求的椭圆方程为(Ⅱ)由(Ⅰ)得, 所以,从而M(1+,0)由,解得因此因为,又,,得,因此,3、(2007年)如图,直线与椭圆交于两点,记的面积为.(I)求在,的条件下,的最大值;(II)当,时,求直线的方程.解析:(I)设点的坐标为,点的坐标为.

9、..专业知识分享...WORD格式整理..由,解得所以,当且仅当时,.S取到最大值1.(Ⅱ)解:由得                      ①|AB|=②又因为O到AB的距离  所以  ③③代入②并整理,得,解得,,代入①式检验,△>0,故直线AB的方程是或或或.4、(2008年)已知曲线C是到点P()和到直线距离相等的点的轨迹。是过点Q(-1,0)的直线,M是C上(不在上)的动点;A、B在上,轴(如图)。(Ⅰ)求曲线C的方程;(Ⅱ)求出直线的方程,使得为常数。解析:(Ⅰ)设为上的点,则,到直线的距离为.由题设得.化简,得曲线

10、的方程为.(Ⅱ)解法一:..专业知识分享...WORD格式整理..设,直线,则,从而.ABOQyxlM在中,因为,.所以.,.当时,,从而所求直线方程为.解法二:设,直线,则,从而.过垂直于的直线.ABOQyxlMHl1因为,所以,.当时,,从而所求直线方程为.5、(2009年)已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为.(I)求椭圆的方程;(II)设点在抛物线:上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值...专业知识分享...WORD格式整理..OxyAPMN解析:(Ⅰ)解:由题意,得从而因此

11、,所求的椭圆方程为.(Ⅱ)解:如图,设,则抛物线在点处的切线斜率为.直线的方程为:.将上式代入椭圆的方程中,得.即.①因为直线与椭圆有两个不同的交点,所以①式中的.②设线段的中点的横坐标是,则.设线段的中点的横坐标是,则.由题意,得,即.③由③式中的,得,或.当时,.则不等式②不成立,所以.当时,代入方程③得,将代入不等式②,检验成立.所以,的最小值为1.6、(2010年)已知,直线椭圆分别为椭圆C的左、右焦点...专业知识分享...WORD格式整理..(I)当直线过右焦点F2时,求直线的方程;(II)设直线与椭圆C交于A,B两点

12、,,的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.解析:(Ⅰ)解:因为直线经过,所以又因为所以故直线的方程为(Ⅱ)解:设,由消去得:则由,知且有由于故O为F1F2的中点,由,可知设M是GH的中点,则由题意可知,好即而..专业知识分享...WORD格式整理..所以即又因为所以所以的取值范围是(1,2)。7、(2011年)已知抛物线=,圆的圆心为点M。(Ⅰ)求点M到抛物线的准线的距离;(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂足于AB,求直线

13、的方程.解析:8、(2012年)如图,椭圆的离心率为,其左焦点到点P(2,1)的距离为,不过原点O的直线与C相交于A,B两点,且线段AB被直线OP平分。(Ⅰ)求椭圆C的方程;(Ⅱ)求△面积取最大值时直线的方程。解析:..专业知识分享...WORD格式整理....专业知识分享...WORD格式整理..9、(2013年)如图,点是椭圆的一个顶点,的长轴是圆的直径,是过点且互相垂直的两条直线,其中交于两点,交于另一点.求椭圆的方程;求面积取最大值时直线的方程.(1)由题意得∴椭圆的方程为(2)设由题意知直线的斜率存在,不妨设其为,则直线

14、的方程为故点到直线的距离为,又圆:,∴又,∴直线的方程为由,消去,整理得,故,代入的方程得∴设△的面积为,则..专业知识分享...WORD格式整理..∴当且仅当,即时上式取等号。∴当时,△的面积取得最大值,此时直线的方程为10、(2014年)如图,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。