分数阶微分方程迭代方法

分数阶微分方程迭代方法

ID:27103377

大小:4.86 MB

页数:41页

时间:2018-12-01

分数阶微分方程迭代方法_第1页
分数阶微分方程迭代方法_第2页
分数阶微分方程迭代方法_第3页
分数阶微分方程迭代方法_第4页
分数阶微分方程迭代方法_第5页
资源描述:

《分数阶微分方程迭代方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、2009–4–30AnIterativeMethodforFractionalOrderDifferentialEquationsCandidateSupervisorandRankYapingZhangProfessorXuenianCaoCollegeProgramSpecializationDegreeUniversityDateMathematicsandComputationalScienceTheComputationalMathematicsNumericalMethodsofFraction

2、alDifferentialEquationsMasterofScienceXiangTanUniversityApril30th,2009NIM)Daftardar−GejjiBagley−Torvik-(ADM)Jafari(VIM)I(HPM)(AdomianAbstractFractionaldifferentialequationscaneffectivelysimulatemanyscientificphenomenaincontrollerstheory,fluidmechanics,biolog

3、y,andhasbeenusedwidelyinscientificandengineeringfield.Inrecentyears,moreandmoreschol-arsresearchinfractionaldifferentialequations,theytriedtoresolvefractionaldifferentialequations,butmanyanalyticsolutionsoffractionaldifferentialequationsareexpressedbycomplexseri

4、esorspecialfunctions,sothenumer-icalsolutionoffractionaldifferentialequationsbecomesmoreimportant.Inthispaper,anewiterativemethod(NIM)proposedbyDaftarar-GejjiandJafariisappliedtosolvefractionalordinarydifferentialequationsandfractionalpartialdifferentialequati

5、ons.WeobtainthenumericalsolutionsoffractionalorderBagley-Torvikequation,nonlinearanomalousdiffusionequa-tion,linearandnonlineartime-spacefractionalreaction-diffusionequationsandfractionaltelegraphequation.Numericalresultsdemonstratetheeffi-ciencyofthisiterative

6、methodbycomparingseveralnumericalmethods,suchasAdomiandecompositionmethod(ADM),variationaliterationmethod(VIM)andhomotopyperturbationmethod(HPM).Keywords:Fractionalorderderivatives;Fractionalorderintegrals;Frac-tionalorderdifferentialequations;Newiterativeme

7、thodII1§1.1§1.2...........................................................136§2.1(NIM).....................6§2.2.............................712§3.1NIM§3.2...........12.............................14-20§4.1NIM§4.2NIM--.........20.......2329§5.1N

8、IM§5.2...................29.............................303435i§1.1Leibniz(1695)(1823Euler(1730)Liouville(1832)Laplace(1812)Riemann(1847)Fourier(1822))AbelNutting([29])(1921)Gemant([25][26])(19

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。