初中数学几何解题技巧

初中数学几何解题技巧

ID:27022577

大小:47.55 KB

页数:4页

时间:2018-11-30

初中数学几何解题技巧_第1页
初中数学几何解题技巧_第2页
初中数学几何解题技巧_第3页
初中数学几何解题技巧_第4页
资源描述:

《初中数学几何解题技巧》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、中考数学复习系列资料学习总结:中考几何题证明思路总结几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的基本证明题做了一个较为全面的思路总结。    一、证明两线段相等  相关图形证明两线段相等原理线等于同一线段的两条线段相等等量代换线段垂直平分线上任意一点到线段两段距离相等公共边相等隐含条件角角平分线上任一点到角的两边距离相等三角形等腰三角形同一三角形中等角对等边等角对等边等腰三角

2、形顶角的平分线或底边的高平分底边三线合一直角三角形直角三角形斜边的中点到三顶点距离相等全等三角形两全等三角形中对应边相等平行四边形平行四边形对边相等且对角线互相平分平行四边形性质矩形对角线相等菱形四边相等正方形对角线相等且四边相等梯形等腰梯形两腰相等对角线相等圆同圆(或等圆)等弧所对的弦相等等弧对等弦与圆心等距的两弦相等等弦心距对等弦等圆心角、圆周角所对的弦相等等角对等弦圆外一点引圆的两条切线的切线长相等切线长定理垂直于直径的弦被直径分成的两段相等。 垂径定理4中考数学复习系列资料二、证明两角相等 相关图形证明两角相等原理线两条平行线的同位角、内错角相等角平分线平分的两角相等角对

3、顶角相等隐含条件等于同一角的两个角相等等量代换同角(或等角)的余角(或补角)相等。等量代换三角形等腰三角形同一三角形中等边对等角等边对等角等腰三角形中,底边上的中线(或高)平分顶角三线合一直角三角形直角三角形斜边的中点到三顶点距离相等全等三角形两全等三角形的对应角相等相似三角形两相似三角形的对应角相等平行四边形平行四边形对角相等平行四边形性质矩形四个内角都是90°菱形四个内角被对角线平分正方形有8个90°和8个45°角梯形等腰梯形两个上底角、两个下底角相等圆同圆(或等圆)等弦所对的圆心角、圆周角相等等弦对等角等弧所对的圆心角、圆周角相等等弧对等角弦切角等于它所夹的弧对的圆周角弦切

4、角定理圆的内接四边形的外角等于内对角(对角互补)三、证明两直线平行 相关图形证明两直线平行 原理线平行于同一直线的两直线平行。垂直于同一直线的各直线平行角同位角相等,内错角相等或同旁内角互补的两直线平行三角形三角形的中位线平行且等于底边的一半中位线定理相似三角形一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。平行四边形对边平行梯形上下两底平行梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h中位线定理4中考数学复习系列资料四、证明两直线互相垂直或一角是90°相关图形证明两直线互相垂直或一角是90°原理线一条直线垂直于平行线中的

5、一条,则必垂直于另一条到一线段两端的距离相等的点在线段的垂直平分线上角等于同一角的两个角相等等量代换三角形在一个三角形中,若有两个角互余,则第三个角是直角等量代换(凑角)等腰三角形等腰三角形的顶角平分线或底边的中线垂直于底边。 三线合一直角三角形三角形中一边的中线若等于这边一半,则这一边所对的角是直角利用勾股定理的逆定理勾股定理相似三角形两相似三角形的对应角相等平行四边形矩形四个内角都是90°平行四边形性质菱形菱形的对角线互相垂直正方形有8个90°和8个45°角圆同圆(或等圆)在圆中平分弦(或弧)的直径垂直于弦垂径定理直径所对的圆周角是直角特别的,证明直线与圆相切常用等量代换、凑

6、角为90°等方法五、证明线段的和、差、倍、分          1.作两条线段的和,证明与第三条线段相等。          2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。           3.延长短线段为其二倍,再证明它与较长的线段相等。           4.取长线段的中点,再证其一半等于短线段。          5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。六、证明角的和、差、倍、分          1.作两个角的和,证明与第三角相等。           2.作两个角的

7、差,证明余下部分等于第三角。          3.利用角平分线的定义。          4.三角形的一个外角等于和它不相邻的两个内角的和。4中考数学复习系列资料七、证明两线段不等          1.同一三角形中,大角对大边。          2.垂线段最短。          3.三角形两边之和大于第三边,两边之差小于第三边。          4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。          5.同圆或等圆中,弧大弦大,弦心距小。  

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。