大一上学期(第一学期)高数期末考试题

大一上学期(第一学期)高数期末考试题

ID:26820945

大小:164.53 KB

页数:5页

时间:2018-11-29

大一上学期(第一学期)高数期末考试题_第1页
大一上学期(第一学期)高数期末考试题_第2页
大一上学期(第一学期)高数期末考试题_第3页
大一上学期(第一学期)高数期末考试题_第4页
大一上学期(第一学期)高数期末考试题_第5页
资源描述:

《大一上学期(第一学期)高数期末考试题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、大一上学期高数期末考试一、单项选择题(本大题有4小题,每小题4分,共16分)1..(A)(B)(C)(D)不可导.2..(A)是同阶无穷小,但不是等价无穷小;(B)是等价无穷小;(C)是比高阶的无穷小;(D)是比高阶的无穷小.3.若,其中在区间上二阶可导且,则().(A)函数必在处取得极大值;(B)函数必在处取得极小值;(C)函数在处没有极值,但点为曲线的拐点;(D)函数在处没有极值,点也不是曲线的拐点。4.(A)(B)(C)(D).二、填空题(本大题有4小题,每小题4分,共16分)5..6..7..8..三、解答题(本大题有5小题,每小题8分,共40

2、分)9.设函数由方程确定,求以及.10.1.2.设函数连续,,且,为常数.求并讨论在处的连续性.3.求微分方程满足的解.四、解答题(本大题10分)4.已知上半平面内一曲线,过点,且曲线上任一点处切线斜率数值上等于此曲线与轴、轴、直线所围成面积的2倍与该点纵坐标之和,求此曲线方程.五、解答题(本大题10分)5.过坐标原点作曲线的切线,该切线与曲线及x轴围成平面图形D.(1)求D的面积A;(2)求D绕直线x=e旋转一周所得旋转体的体积V.六、证明题(本大题有2小题,每小题4分,共8分)6.设函数在上连续且单调递减,证明对任意的,.7.设函数在上连续,且,.

3、证明:在内至少存在两个不同的点,使(提示:设)解答一、单项选择题(本大题有4小题,每小题4分,共16分)1、D2、A3、C4、C二、填空题(本大题有4小题,每小题4分,共16分)5..6..7..8..三、解答题(本大题有5小题,每小题8分,共40分)9.解:方程两边求导,10.解:11.解:12.解:由,知。,在处连续。9.解:,四、解答题(本大题10分)10.解:由已知且,将此方程关于求导得特征方程:解出特征根:其通解为代入初始条件,得故所求曲线方程为:五、解答题(本大题10分)11.解:(1)根据题意,先设切点为,切线方程:由于切线过原点,解出,

4、从而切线方程为:则平面图形面积(2)三角形绕直线x=e一周所得圆锥体体积记为V1,则曲线与x轴及直线x=e所围成的图形绕直线x=e一周所得旋转体体积为V2D绕直线x=e旋转一周所得旋转体的体积六、证明题(本大题有2小题,每小题4分,共12分)9.证明:故有:证毕。10.证:构造辅助函数:。其满足在上连续,在上可导。,且由题设,有,有,由积分中值定理,存在,使即综上可知.在区间上分别应用罗尔定理,知存在和,使及,即.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。