实验五ARIMA模型的概念和构造.doc

实验五ARIMA模型的概念和构造.doc

ID:26801743

大小:120.50 KB

页数:6页

时间:2018-11-29

实验五ARIMA模型的概念和构造.doc_第1页
实验五ARIMA模型的概念和构造.doc_第2页
实验五ARIMA模型的概念和构造.doc_第3页
实验五ARIMA模型的概念和构造.doc_第4页
实验五ARIMA模型的概念和构造.doc_第5页
资源描述:

《实验五ARIMA模型的概念和构造.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实验五ARIMA模型的概念和构造一、实验目的了解AR,MA以及ARIMA模型的特点,了解三者之间的区别联系,以及AR与MA的转换,掌握如何利用自相关系数和偏自相关系数对ARIMA模型进行识别,利用最小二乘法等方法对ARIMA模型进行估计,利用信息准则对估计的ARIMA模型进行诊断,以及如何利用ARIMA模型进行预测。掌握在实证研究如何运用Eviews软件进行ARIMA模型的识别、诊断、估计和预测。二、基本概念所谓ARIMA模型,是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值

2、和滞后值进行回归所建立的模型。ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA)、自回归过程(AR)、自回归移动平均过程(ARMA)以及ARIMA过程。在ARIMA模型的识别过程中,我们主要用到两个工具:自相关函数(简称ACF),偏自相关函数(简称PACF)以及它们各自的相关图(即ACF、PACF相对于滞后长度描图)。对于一个序列来说,它的第j阶自相关系数(记作)定义为它的j阶自协方差除以它的方差,即=,它是关于j的函数,因此我们也称之为自相关函数,通常记ACF(j)。偏自相关函数

3、PACF(j)度量了消除中间滞后项影响后两滞后变量之间的相关关系。三、实验内容及要求1、实验内容:根据1991年1月~2005年1月我国货币供应量(广义货币M2)的月度时间数据来说明在Eviews3.1软件中如何利用B-J方法论建立合适的ARIMA(p,d,q)模型,并利用此模型进行数据的预测。2、实验要求:(1)深刻理解上述基本概念;(2)思考:如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA模型;如何利用ARIMA模型进行预测;(3)熟练掌握相关Eviews操作。四、

4、实验指导1、ARIMA模型的识别(1)导入数据打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,出现“WorkfileRange”对话框,在“Workfilefrequency”框中选择“Monthly”,在“Startdate”和“Enddate”框中分别输入“1991:01”和“2005:01”,然后单击“OK”,选择“File”菜单中的“Import--ReadText-Lotus-Excel”选项,找到要导入的名为EX6.2.xls的Excel文档,单击“打开”出现“Exc

5、elSpreadsheetImport”对话框并在其中输入相关数据名称(M2),再单击“OK”完成数据导入。(2)模型的识别首先利用ADF检验,确定d值,判断M2序列为2阶非平稳过程(由于具体操作方法我们在第五章中予以说明,此处略),即d的值为2,将两次差分后得到的平稳序列命名为W2;下面我们来看W2的自相关、偏自相关函数图。打开W2序列,点击“View”—“Correlogram”菜单,会弹出如图5-1所示的窗口,图5-1自相关形式设定我们选择滞后项数为36,然后点击“OK”,就得到了W2的自相关函数图和偏自相

6、关函数图,如图5-2所示。图5-2W2自相关函数图和偏自相关函数图从W2的自相关函数图和偏自相关函数图中我们可以看到,他们都是拖尾的,因此可设定为ARMA过程。W2的自相关函数1-5阶都是显著的,并且从第6阶开始下降很大,数值也不太显著,因此我们先设定q值为5。W2的偏自相关函数1-2阶都很显著,并且从第3阶开始下降很大,因此我们先设定p的值为2,于是对于序列W2,我们初步建立了ARMA(2,5)模型。2、模型的估计点击“Quick”-“EstimateEquation”,会弹出如图5-3所示的窗口,在“Equa

7、tionSpecification”空白栏中键入“W2CMA(1)MA(2)MA(3)MA(4)MA(5)AR(1)AR(2)”,在“EstimationSettings”中选择“LS-LeastSquares(NLSandARMA)”,然后“OK”,得到如图5-4所示的估计结果。图5-3回归方程设定图5-4ARMA(2,5)回归结果可以看到,除常数项外,其它解释变量的系数估计值在15%的显著性水平下都是显著的。3、模型的诊断点击“View”—“Residualtest”—“Correlogram-Q-stati

8、stics”,在弹出的窗口中选择滞后阶数为36,点击“Ok”,就可以得到Q统计量,此时为30.96,p值为0.367,因此不能拒绝原假设,可以认为模型较好的拟合了数据。我们再来看是否存在一个更好的模型。我们的做法是增加模型的滞后长度,然后根据信息值来判断。表5-1是我们试验的几个p,q值的AIC信息值。表5-1不同p,q值的AIC信息值p234222333444q5556

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。