粒子群优化算法概述

粒子群优化算法概述

ID:26650452

大小:148.03 KB

页数:6页

时间:2018-11-28

粒子群优化算法概述_第1页
粒子群优化算法概述_第2页
粒子群优化算法概述_第3页
粒子群优化算法概述_第4页
粒子群优化算法概述_第5页
资源描述:

《粒子群优化算法概述》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、计算机辅助工艺课程作业学生:赵华琳学号:s308070072时间:09年6月粒子群优化算法概述0.前言优化是科学研究、工程技术和经济管理等领域的重要研究工具。它所研究的问题是讨论在众多的方案中寻找最优方案。例如,工程设计中怎样选择设计参数,使设计方案既满足设计要求又能降低成本;资源分配中,怎样分配有限资源,使分配方案既能满足各方面的基本要求,又能获得好的经济效益。在人类活动的各个领域中,诸如此类,不胜枚举。优化这一技术,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性很强的科学。近十余年来,粒子群优化算法作为群体智能算法的一个重要分支得到了广泛深入的研究,在

2、路径规划等许多领域都有应用。本文主要结合现阶段的研究概况对粒子群优化算法进行初步介绍。1.粒子群优化算法的基本原理1.1粒子群优化算法的起源粒子群优化(PSO)算法是由Kennedy和Eberhart于1995年用计算机模拟鸟群觅食这一简单的社会行为时,受到启发,简化之后而提出的[1][2]。设想这样一个场景:一群鸟随机的分布在一个区域中,在这个区域里只有一块食物。所有的鸟都不知道食物在哪里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的方法就是追寻自己视野中目前离食物最近的鸟。如果把食物当作最优点,而把鸟离食物的距离当作函数的适应度,那么鸟寻

3、觅食物的过程就可以当作一个函数寻优的过程。鱼群和鸟群的社会行为一直引起科学家的兴趣。他们以特殊的方式移动、同步,不会相互碰撞,整体行为看上去非常优美。生物学家CargiReynolds提出了一个非常有影响的鸟群聚集模型。在他的模拟模型boids中,每一个个体遵循:避免与邻域个体相冲撞、匹配邻域个体的速度、试图飞向感知到的鸟群中心这三条规则形成简单的非集中控制算法驱动鸟群的聚集,在一系列模拟实验中突现出了非常接近现实鸟群聚集行为的现象。该结果显示了在空中回旋的鸟组成轮廓清晰的群体,以及遇到障碍物时鸟群的分裂和再度汇合过程。由此受到启发,经过简化提出了粒子群优化算法。1.2粒子群优化

4、算法的原理在粒子群优化算法中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值,每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。优化开始时先初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己。第一个极值就是整个种群目前找到的最优解。这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。第二个极值是粒子本身所找到的最优解,称为个体极值。这是因为粒子仅仅通过跟踪全局极值或者局部

5、极值来更新位置,不可能总是获得较好的解。这样在优化过程中,粒子在追随全局极值或局部极值的同时追随个体极值则圆满的解决了这个问题。这就是粒子群优化算法的原理。在算法开始时,随机初始化粒子的位置和速度构成初始种群,初始种群在解空间中为均匀分布。其中第i个粒子在n维解空间的位置和速度可分别表示为Xi=(xi1,xi2,…,xid)和Vi=(vi1,vi2,…,vid),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己的速度和位置。一个极值是粒子本身到目前为止所找到的最优解,这个极值称为个体极值Pbi=(Pbi1,Pbi2,…,Pbid)。另一个极值是该粒子的邻域到

6、目前为止找到的最优解,这个极值称为整个邻域的最优粒子Nbesti=(Nbesti1,Nbesti2,…,Nbestid)。粒子根据如下的式(2-1)和式(2-2)来更新自己的速度和位置:Vi=Vi+c1·rand()·(Pbesti-Xi)+c2·rand()·(Nbesti-Xi)(2-1)Xi=Xi+Vi(2-2)式中c1和c2是加速常量,分别调节向全局最好粒子和个体最好粒子方向飞行的最大步长,若太小,则粒子可能远离目标区域,若太大则会导致突然向目标区域飞去,或飞过目标区域。合适的c1,c2可以加快收敛且不易陷入局部最优。rand()是0到1之间的随机数。粒子在每一维飞行的速

7、度不能超过算法设定的最大速度Vmax。设置较大的Vmax可以保证粒子种群的全局搜索能力,Vmax较小则粒子种群优化算法的局部搜索能力加强。粒子群优化算法是在模拟鸟群觅食时受到启发提出的。提出之后却发现用动物或人的认知来解释算法的原理更加完美。在速度更新公式(2-1)中由3个部分构成。第1个部分是Vi,表示粒子在解空间有按照原有方向和速度进行搜索的趋势,这可以用人在认知事物时总是用固有的习惯来解释。第2个部分是c1·rand()·(Pbesti-Xi),表示粒子在解空间有朝着过去曾

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。