高中生数学思维障碍的成因及突破简析

高中生数学思维障碍的成因及突破简析

ID:26177297

大小:54.00 KB

页数:7页

时间:2018-11-25

高中生数学思维障碍的成因及突破简析  _第1页
高中生数学思维障碍的成因及突破简析  _第2页
高中生数学思维障碍的成因及突破简析  _第3页
高中生数学思维障碍的成因及突破简析  _第4页
高中生数学思维障碍的成因及突破简析  _第5页
资源描述:

《高中生数学思维障碍的成因及突破简析 》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高中生数学思维障碍的成因及突破简析摘要:学生的数学思维存在着障碍,这种思维障碍,有的是来自于教学中的疏漏,更多的则来自于学生自身,研究高中学生的数学思维障碍对于增强高中学生数学教学的针对性和实效性有十分重要的意义。  关键词:思维;思维障碍;素质教育。    所谓高中学生数学思维,是指学生在对高中数学感性认识的基础上,运用比较、分析、综合、归纳、演绎等思维的基本方法,理解并掌握高中数学内容而且能对具体的数学问题进行推论与判断,从而获得对高中数学知识本质和规律的认识能力。高中数学的数学思维虽然并非总等于

2、解题,但我们可以这样讲,高中学生的数学思维的形成是建立在对高中数学基本概念、定理、公式理解的基础上的;发展高中学生数学思维最有效的方法是通过解决问题来实现的。事实上,有不少问题的解答,学生发生困难,并不是因为这些问题的解答太难以致学生无法解决,而是其思维形式或结果与具体问题的解决存在着差异,也就是说,这时候,学生的数学思维存在着障碍。这种思维障碍,有的是来自于我们教学中的疏漏,而更多的则来自于学生自身,来自于学生中存在的非科学的知识结构和思维模式。因此,研究高中学生的数学思维障碍对于增强高中学生数学教

3、学的针对性和实效性有十分重要的意义。    一、高中学生数学思维障碍的形成原因    根据布鲁纳的认识发展理论,学习本身是一种认识过程。在这个过程中,个体的学习总是要通过已知的内部认知结构,对"从外到内"的输入信息进行整理加工,以一种易于掌握的形式加以储存,也就是说,学生能从原有的知识结构中提取最有效的旧知识来吸纳新知识,即找到新旧知识的"媒介点",这样,新旧知识在学生的头脑中发生积极的相互作用和联系,导致原有知识结构的不断分化和重新组合,使学生获得新知识。但是这个过程并非总是一次性成功的。一方面,如

4、果在教学过程中,教师不顾学生的实际情况(即基础)或不能觉察到学生的思维困难之处,而是任由教师按自己的思路或知识逻辑进行灌输式教学,到学生自己去解决问题时往往会感到无所适从;另一方面,当新的知识与学生原有的知识结构不相符时或者新旧知识中间缺乏必要的"媒介点"时,这些新知识就会被排斥或经"校正"后吸收。因此,如果教师的教学脱离学生的实际,如果学生在学习高中数学过程中,其新旧数学知识不能顺利"交接",那么这时就势必会造成学生对所学知识认知上的不足、理解上的偏颇,从而在解决具体问题时就会产生思维障碍,影响学生

5、解题能力的提高。    二、高中数学思维障碍的具体表现    由于高中数学思维障碍产生的原因不尽相同,作为主体的学生的思维习惯、方法也都有所区别,所以,高中数学思维障碍的表现各异,具体地说,可以概括为:  1、数学思维的肤浅性。由于学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的理解,一般的学生仅仅停留在表象的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果:①学生在分析和解决数学问题时,往往只顺着事物的发展过程去

6、思考问题,注重由因到果的思维习惯,不注重变换思维的方式,缺乏沿着多方面去探索解决问题的途径和方法。例如在课堂上,我曾要求学生证明:如

7、a

8、≤1,

9、b

10、≤1,则……让学生思考片刻后回答。有相当一部分的同学是通过三角代换来证明的(设a=cosα,b=sinα),理由是

11、a

12、≤1,

13、b

14、≤1(事后统计这样的同学占到近20%)。这恰好反映了学生在思维上的肤浅,把两个毫不相干的量(a,b)建立了具体的联系。②缺乏足够的抽象思维能力,学生往往善于处理一些直观的或熟悉的数学问题,而对那些不具体的、抽象的数学问题常常

15、不能抓住其本质,转化为已知的数学模型或过程去分析解决。  2、数学思维的差异性。由于每个学生的数学基础不尽相同,其思维方式也各有特点,因此不同的学生对于同一数学问题的认识、感受也不会完全相同,从而导致学生对数学知识理解的偏颇。这样,学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。如非负实数x,y满足x+2y=1,求x2+y2的最大、最小值。在解决这个问题时,如对x、y的范围没有足够的认识(0≤x≤1,0≤y≤1/2),那么就容易产生错误。另一方面

16、学生不知道用所学的数学概念、方法为依据进行分析推理,对一些问题中的结论缺乏多角度的分析和判断,缺乏对自我思维进程的调控,从而造成障碍。如函数y=f(x)满足f(2+x)=f(2-x)对任意实数x都成立,证明函数y=f(x)的图象关于直线x=2对称。对于这个问题,一些基础好的同学都不大会做(主要反映写不清楚),我就动员学生看书,在函数这一章节中找相关的内容看。待看完奇、偶函数、反函数与原函数的图象对称性之后,学生也就能较顺利的解决这一问题了。  3、数学思

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。