双曲线及其标准方程(带动画)

双曲线及其标准方程(带动画)

ID:26062739

大小:2.16 MB

页数:16页

时间:2018-11-24

双曲线及其标准方程(带动画)_第1页
双曲线及其标准方程(带动画)_第2页
双曲线及其标准方程(带动画)_第3页
双曲线及其标准方程(带动画)_第4页
双曲线及其标准方程(带动画)_第5页
资源描述:

《双曲线及其标准方程(带动画)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、双曲线及其标准方程巴西利亚大教堂北京摩天大楼法拉利主题公园花瓶1.回顾椭圆的定义?探索研究平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点轨迹叫做椭圆。思考:如果把椭圆定义中的“距离之和”改为“距离之差”,那么动点的轨迹会是怎样的曲线?即“平面内与两个定点F1、F2的距离的差等于常数的点的轨迹”是什么?画双曲线演示实验:用拉链画双曲线①如图(A),

2、MF1

3、-

4、MF2

5、=2a②如图(B),上面两条合起来叫做双曲线由①②可得:

6、

7、MF1

8、-

9、MF2

10、

11、=2a(差的绝对值)

12、MF2

13、-

14、MF1

15、=2a根据实验及椭圆定义,你

16、能给双曲线下定义吗?平面内与两个定点F1,F2的距离的和为一个定值(大于︱F1F2︱)的点的轨迹叫做椭圆①两个定点F1、F2——双曲线的焦点;②

17、F1F2

18、=2c——焦距.平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于︱F1F2︱)的点的轨迹叫做双曲线.注意

19、

20、MF1

21、-

22、MF2

23、

24、=2a(1)距离之差的绝对值(2)常数要大于0小于

25、F1F2

26、0<2a<2c回忆椭圆的定义2.双曲线的定义F1o2FM

27、

28、MF1

29、-

30、MF2

31、

32、=

33、F1F2

34、时,M点一定在上图中的射线F1P,F2Q上,此时点的轨迹为两条射线F1P、F2Q。②常数大

35、于

36、F1F2

37、时①常数等于

38、F1F2

39、时

40、MF1

41、-

42、MF2

43、>

44、F1F2

45、F2F1PMQM是不可能的,因为三角形两边之差小于第三边。此时无轨迹。此时点的轨迹是线段F1F2的垂直平分线。则

46、MF1

47、=

48、MF2

49、F1F2M③常数等于0时∵若常数2a=

50、MF1

51、-

52、MF2

53、=0xyo设M(x,y),双曲线的焦距为2c(c>0),F1(-c,0),F2(c,0)F1F2M即(x+c)2+y2-(x-c)2+y2=+2a_以F1,F2所在的直线为X轴,线段F1F2的中点为原点建立直角坐标系1.建系.2.设点.3.列式.

54、MF1

55、-

56、MF2

57、=2a

58、如何求这优美的曲线的方程??4.化简.3.双曲线的标准方程令c2-a2=b2yoF1MF2F1MxOyOMF2F1xy双曲线的标准方程焦点在x轴上焦点在y轴上双曲线定义及标准方程定义图象方程焦点a.b.c的关系

59、

60、MF1

61、-

62、MF2

63、

64、=2a(0<2a<

65、F1F2

66、)F(±c,0)F(0,±c)判断:与的焦点位置?思考:如何由双曲线的标准方程来判断它的焦点是在X轴上还是Y轴上?结论:看前的系数,哪一个为正,则焦点在哪一个轴上。例1.已知双曲线的焦点为F1(-5,0),F2(5,0)双曲线上一点到焦点的距离差的绝对值等于6,则(1)a=__

67、_____,c=_______,b=_______(2)双曲线的标准方程为______________(3)双曲线上一点P,

68、PF1

69、=10,则

70、PF2

71、=_________3544或16例题分析?双曲线的标准方程与椭圆的标准方程有何区别与联系?定义方程焦点a.b.c的关系F(±c,0)F(±c,0)a>0,b>0,但a不一定大于b,c2=a2+b2a>b>0,a2=b2+c2双曲线与椭圆之间的区别与联系

72、

73、MF1

74、-

75、MF2

76、

77、=2a

78、MF1

79、+

80、MF2

81、=2a椭圆双曲线F(0,±c)F(0,±c)小结----双曲线定义及标准方程定义图

82、象方程焦点a.b.c的关系

83、

84、MF1

85、-

86、MF2

87、

88、=2a(0<2a<

89、F1F2

90、)F(±c,0)F(0,±c)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。