欢迎来到天天文库
浏览记录
ID:25975295
大小:280.71 KB
页数:3页
时间:2018-11-24
《点差法习题(有答案)》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、点差法习题 若设直线与圆锥曲线的交点(弦的端点)坐标为、,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。一、以定点为中点的弦所在直线的方程例1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。例2、已知双曲线,经过点能否作一条直线,使与双曲线交于、,且点是线段的中点。若存在这样的直线,求出它的方程,若不存在,说明理由。二、过定点的弦和平行弦的中点坐标和中点轨迹例3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。例4、已
2、知椭圆,求它的斜率为3的弦中点的轨迹方程。三、求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。四、圆锥曲线上两点关于某直线对称问题例6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。答案例1.解:设直线与椭圆的交点为、为的中点 又、两点在椭圆上,则,两式相减得于是即,故所求直线的方程为,即。例2.解:设存在被点平分的弦,且、则,,两式相减,得 故直线由 消去,得这说明直线与双曲线不相交,故被点平分的弦不存在,即不存在这样的直线。评述:本题如果忽视对判别
3、式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的位置非常重要。(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。例3.解:设弦端点、,弦的中点,则,又,两式相减得即,即点的坐标为。例4.解:设弦端点、,弦的中点,则,又,两式相减得即,即,即由,得点在椭圆内它的斜率为3的弦中点的轨迹方程为例5.解:设椭圆的方程为,则┅┅①设弦端点、,弦的中点,则,,又,两式相减得即┅┅②联立①②解得,所求椭圆的方程是例6.解:设,为椭圆上关于直线的对称两点,为弦的中点,则,两式相减得,即,,
4、 这就是弦中点轨迹方程。它与直线的交点必须在椭圆内联立,得 则必须满足,即,解得
此文档下载收益归作者所有