“三角形的中位线”教学设计案例论文

“三角形的中位线”教学设计案例论文

ID:25857153

大小:67.00 KB

页数:10页

时间:2018-11-23

“三角形的中位线”教学设计案例论文_第1页
“三角形的中位线”教学设计案例论文_第2页
“三角形的中位线”教学设计案例论文_第3页
“三角形的中位线”教学设计案例论文_第4页
“三角形的中位线”教学设计案例论文_第5页
资源描述:

《“三角形的中位线”教学设计案例论文》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、“三角形的中位线”教学设计案例论文摘要:本文从设计思路、教学过程、板书设计和课后反思四个方面介绍了“三角形的中位线”教学设计案例。关键词:三角形中位线;设计思路;教学过程;板书设计;课后反思作者简介:王雪枫,任教于甘肃省兰州市第四中学。授课班级:甘肃省兰州市第四中学九年级(5)班授课教材:义务教育课程标准实验教科书《数学》(北师大版)九年级上册第三章《证明(三)》第一节平行四边形(第三课时)。一、设计思路(一)教材分析本课时所要探究的三角形中位线定理是学生以前从未接触过的内容。因此,在教学中通过创设有趣的情境问题,激

2、发学生的学习兴趣,注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路..毕业,让学生充分经历“探索—发现—猜想—证明”这一过程,体会合情推理与演绎推理在获得结论的过程中发挥的作用,同时渗透归纳、类比、转化等数学思想方法。通过本节课的学习,应使学生理解三角形中位线定理不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为证明线段之间的位置关系和数量关系(倍分关系)提供了新的思路,从而提高学生分析问题、解决问题的能力。(二)学情分析本班学生基础知识比较扎实,接受新知识的意识

3、较强,对于本章有关平行四边形的性质和判定的内容掌握较好,但知识迁移能力较差,数学思想方法运用不够灵活。因此,本节课着眼于基础,注重能力的培养,积极引导学生首先通过实际操作获得结论,然后借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识的迁移同时重点渗透转化、类比、归纳的数学思想方法,使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。三)教学目标1.知识目标1)了解三角形中位线的概念。2)掌握三角形中位线定理的证明和有关应用。2.能力目标1)经历“探索—发现—猜想—证明”的过程,进一步发展推理论证能

4、力。2)能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化等数学思想方法。3)能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。3.情感目标通过学生动手操作、观察、实验、推理、猜想、论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识。(四)教学重点与难点教学重点:三角形中位线的概念与三角形中位线定理的证明.教学难点:三角形中位线定理的多种证明。(五)教学方法与学法指导对于三角形中位线定理的引入采用发

5、现法,在教师的引导下,学生通过探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。(六)教具和学具的准备教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。学具:三角形纸片、剪刀、刻度尺、量角器。二、教学过程1.一道趣题——课堂因你而和谐问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书)(这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛

6、变得较为和谐,课堂也鲜活起来了。)学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形.如图中,将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。问题:你有办法验证吗?2.一种实验——课堂因你而生动学生的验证方法较多,其中较为典型的方法如下:生1:沿DE、DF、EF将画在纸上的△ABC剪开,看四个三角形能否重合。生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全

7、等。引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢?3.一种探索——课堂因你而鲜活师:把连接三角形两边中点的线段叫做三角形的中位线.(板书)问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言)学生的结果如下:DE∥BC,DF∥AC,EF∥AB,AE=EC,BF=FC,BD=AD,△ADE≌△DBF≌△EFC≌△DEF,DE=BC,DF=AC,EF=AB……猜想:三角形的中位线平行于第三边,且等于第三边的一半。(

8、板书)师:如何证明这个猜想的命题呢?生:先将文字问题转化为几何问题然后证明。已知:DE是ABC的中位线,求证:DE//BC、DE=BC。学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。(学生积极讨论

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。