欢迎来到天天文库
浏览记录
ID:25549051
大小:51.50 KB
页数:6页
时间:2018-11-21
《数据挖掘技术在电力营销系统中的应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、数据挖掘技术在电力营销系统中的应用 中图分类号:TP311:1009-2374(2016)21-0050-02DOI:10.13535/j.ki.11-4406/n.2016.21.024 电力营销系统中涉及的核心业务有业扩报装和电能计算、营业计费以及用电管理与线损管理等,各个业务模块又包括涵盖服务、客户中心服务、网络服务等内容的服务模块和包括综合业务查询与历史数据统计以及效益分析与决策支持在内的分析模块,可以说,所有能够为电力系统的正常运行提供决策依据的原始数据都属于营销系统的数据管辖范畴,比如生产系统的规划设计与负荷预测、经济调度、用户特征提取以及异常数据的挖
2、掘处理等。可见电力营销系统有着海量且复杂的数据信息,如何从中快速获取能够为决策提供参考依据的准确信息和量化指标是摆在电力营销部门面前的一个主要问题,数据挖掘技术的出现有效解决了这一难题。下面就其在电力营销系统中的应用问题做进一步探讨。 1电力营销系统数据、特点及数据挖掘技术概述 电力营销系统当中的数据涵盖管理信息系统、SCADA系统、地理信息系统、电网运行过程中的负荷管理系统、配变检测系统、电能量计费系统以及计量检定等实时信息系统中的所用数据,并且这些数据伴随着电力企业的发展逐渐积累,数据含量非常庞大。除此之外,电力营销系统数据在种类上还比较混杂,而且采集到的数据
3、通常都会掺杂着一些噪声或是存在数据缺失、错误等情况,数据质量难以保证。 作为一门新兴的学科,自从集统计学和人工智能以及模式识别、数据库、高性能并行计算与机器学习等多种技术于一体的数据挖掘技术出现之后,人们对于数据的应用不再只停留在简单的数据查询阶段,而是进入到更高层次的应用――从数据中挖掘有价值的知识和信息,给管理者的决策提供支持。当前常用的数据挖掘技术有关联规则、分类和时间序列挖掘与序列挖掘以及聚类、Web挖掘、空间挖掘等。 2数据挖掘技术在电力营销系统中的具体应用 2.1关联规则的应用 作为当前阶段电力营销系统主要研究的一种数据挖掘技术,关联规则可以帮助决
4、策者在对当前数据和历史数据进行分析的基础上找出其中隐含的规律和特征,在此基础上对未来变化趋势做出相应预测。具体介绍以下五种应用途径: 2.1.1在电力市场营销分析中针对经由离散化处理过的电力营销数据使用FP-Gro――客户关系管理当中还可以把神经网络方法和模糊逻辑控制两者结合在一起应用或是在各机组开停机计划表制定中使用回归算法、归纳算法、神经网络改善等。 2.3时间序列与序列挖掘的应用 在所有短期负荷预测方法中,时间序列挖掘是被认为最经典的一种方法,比较系统,同时神经网络则是短期负荷预测中研究最多、应用最为广泛的,因此在电力营销系统的实际应用当中往往会把二者结合
5、在一起对电力营销数据进行分析。在神经网络法当中,相较于BP神经网络,小波神经元网络在收敛速度上有着更好的表现,而且其中采用了基于隶属度改进的聚类方法,有利于负荷大波动日预测精度的改善。另外,为给电力系统的故障定位与故障诊断提供更为有效的指导,可以将建立在时间窗基础上的序列挖掘算法应用到警报信息的处理当中;为提高电力系统运行状态判定的准确性和有效性,可把建立在错误模型分析与快速诊断推理基础上的一种新型数据挖掘算法应用其中,此种算法极大地提升了在对系统运行状态进行挖掘和分析的能力,使得错误模型分析的精确度有所提高。 2.4聚类应用 聚类在电力营销系统当中主要应用在以下
6、方面:电力用户分类、信用评价和负荷预测、分类以及变压器故障诊断、不良数据的修正等。比如,在对客户各个方面不同属性进行划分的基础上通过聚类分析法把客户划分成不同组别,此时负责决策分析的人员就可以此聚类结构为依据对存在于各个组别相互之间的差异性分析出来,然后对类群特征展开研究,这样就可以根据实际情况实行不同的营销策略,保证企业经济效益的提升。又比如,鉴于电力客户信用分类的特性,可以在模糊聚类分析的基础上针对客户信用建立一个评价算法,通过此种算法就可以获得基于不同客户群的聚类中心以及针对每个客户的隶属度矩阵,这样就给针对客户群的特征分析提供了量化的参考依据。在不良数据的校正
7、上,可以在原有聚类算法――CURE算法当中融入信息熵原则来对聚类过程中出现的基本参数进行选择,然后在相关负荷特征曲线的提取上使用Kohonen网络。此外,对于典型负荷的代表曲线,可以在对获取来的用户用电数据进行预处理之后再通过合适的聚类方法、聚类书目获得,这样既可以对用户的用电模式有所了解,又可以为购电合同的制定提供参考依据,帮助企业获得更多的经济 效益。 2.5空间挖掘的应用 在当前市场经济的大环境下,原本就需要决策者对各项数据做出快速的分析和诊断,这样才能够在最短的时间内做出最正确的反应和决策,为电力企业健康、稳定、长远的发展提供有力保障。
此文档下载收益归作者所有