数据挖掘技术在信用卡营销中的应用

数据挖掘技术在信用卡营销中的应用

ID:16347549

大小:118.00 KB

页数:11页

时间:2018-08-09

数据挖掘技术在信用卡营销中的应用_第1页
数据挖掘技术在信用卡营销中的应用_第2页
数据挖掘技术在信用卡营销中的应用_第3页
数据挖掘技术在信用卡营销中的应用_第4页
数据挖掘技术在信用卡营销中的应用_第5页
资源描述:

《数据挖掘技术在信用卡营销中的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、数据挖掘与商业智能论文题目:数据挖掘技术在信用卡营销中的应用学号:200902030109姓名:黄强2011年4月12日11数据挖掘技术在信用卡营销中的应用关键字:数据挖掘信用卡营销摘要:介绍了数据挖掘技术在信用卡营销中的应用,以及数据挖掘技术模型怎样建立,实现了企业的最终盈利。1.信用卡营销理论与技术信用卡营销是指通过激发和挖掘人们对信用卡商品的需求,设计和开发出满足持卡人需求的信用卡商品,并且通过各种有效的沟通手段,使持卡人接受并使用这种商品,从中获得自身最大的满足,以实现经营者的目标。近年来,由于信用卡市场竞争越来越激烈,任何一种信用卡要想抢占更多的市场份额,都必须不

2、断地创新其营销手段。利用计算机技术进行信用卡营销是信用卡营销手段创新的一个方向,例如,利用数据库营销为每一个目标客户提供了做出及时反馈的机会,可以帮助信用卡营销者确定谁是他们的顾客,记录顾客的喜好和行为的具体细节,并以能产生长期忠诚度的方式为顾客服务。有了数据库营销理念,在信用卡业务中,还可以通过对大量的数据进行分析,从而对某一阶层顾客的轮廓进行描述,这样可以轻松找到符合这种轮廓的新顾客,并用定制化的营销方案赢得这些顾客,也就是基于数据挖掘营销技术。2.基于数据挖掘的信用卡营销数据挖掘技术被广泛应用到市场营销中是以市场细分原理为基础,假定“消费者过去的行为是其今后消费倾向的

3、最好说明”。基于数据挖掘的信用卡营销实质是利用数据挖掘方法实现信用卡营销预测的过程。在数据挖掘方法中,回归模型、决策树模型是目前最常应用于营销预测方向的数据挖掘方法。本文将重点用回归和决策树模型建立数据挖掘流程从而进行信用卡营销预测。3.基于数据挖掘的信用卡营销响应度建模本文所定义的信用卡营销响应度是指商业银行在进行信用卡营销,特别是宣传、促销活动的时候,接受营销活动的客户做出的回应,即客户提出信用卡申请的可能性。11本文所要建立的信用卡营销响应度模型,是通过对商业银行目前积累的大量的客户数据进行一系列的处理,利用不同预测类数据挖掘方法对所有商业银行已有客户的信用卡营销响应

4、度进行预测,通过评估不同模型的预测效果,选择最适合的数据挖掘方法建立完整的数据挖掘流程,从而给出每个客户对信用卡宣传活动的响应度,并同时可以得到对应于不同响应度的客户群的特征。通过建立这样一个信用卡营销响应度模型,商业银行一方面可以利用模型的预测结果,对具有不同特征、不同响应度的客户群进行有选择和有针对性的宣传活动,从而减少信用卡宣传活动的盲目性;另一方面还可以利用该模型对任意一个或多个新客户进行信用卡营销响应度预测,给出该客户的响应度。将利用SAS8.0中的数据挖掘工具EM(enterpriseminer)建立信用卡营销响应度模型。4.信用卡营销响应度模型的数据挖掘流程完

5、整的数据挖掘流程包括7个环节:定义商业目标(选题);建立行销数据库(构建数据源);探索数据(考察数据源的数据分布特征);为建模准备数据(包括数据抽样、变量转换、目标变量设置、数据分块以及缺失值转换);建立数据挖掘模型;评估数据挖掘模型;应用数据挖掘模型。目标定义即为商业银行开发一个响应模型,通过这个模型能够对每个客户的信用卡宣传响应程度进行预测。以下本文将建立行销数据库、探索数据和为建模准备数据合并为数据准备阶段,建立数据挖掘流程。4.1信用卡营销响应度模型建模数据准备本文所使用的数据源为某银行截止到2006年5月1日的所有现有客户信息数据,其中被公开引用的数据已经将姓名和

6、身份证号进行了消除敏感信息的相关转换。所引用的主要数据库属性如表1所示。其中,信用等级由银行在客户开户的时候根据其内部信用评分系统给出;年龄随系统时间更新;收入水平为年收入。对于有多个账户的客户,经过处理后将该客户的同类账户余额的汇总金额作为账户余额。表1信用卡响应度模型的数据挖掘数据源表属性11变量名变量说明变量类型取值说明Cif_num客户编码文本——Name姓名文本——Sex性别文本男,女Certype证件类型文本身份证、护照、军官证Cert_number证件号码文本——Birthdate_yyyy出生年数字四位数值Touch_addr联系地址文本——Handset联

7、系方式文本——Credit_level信用等级文本优、良、中、差odate_yyyy档案建立年数字四位数值Psbk_bal存款余额数字连续性数值Loanbin贷款余额数字连续性数值Bin不良贷款数字0、1“1”代表有不良贷款Age年龄数字系统年与出生年之差Income年收入数字连续数值在上述数据基础上进行的数据挖掘建模数据准备是指为实施各种数据挖掘方法而对数据源进行的包括数据探索、抽样、分块、变量转换以及缺失值替换等一系列的数据准备工作。(1)数据探索根据业务人员的经验,在本文所使用的数据源中,客户的存款余额、年龄

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。