资源描述:
《非线性规划建模实验》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、非线性规划建模实验一、二次规划标准型为:MinZ=1/2XTHX+cTXs.t.AX<=bVLB≤X≤VUB用MATLAB软件求解,其输入格式如下:1.x=quadprog(H,C,A,b);2.x=quadprog(H,C,A,b,Aeq,beq);3.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);4.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0);5.x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB,X0,options);6.[x,fval]=quaprog
2、(...);7.[x,fval,exitflag]=quaprog(...);8.[x,fval,exitflag,output]=quaprog(...);第一题:minf(x1,x2)=-2x1-6x2+x12-2x1x2+2x22s.t.x1+x2≤2-x1+2x2≤2x1≥0,x2≥01、写出标准形式为s.t.2、输入命令:H=[1-1;-12];c=[-2;-6];A=[11;-12];b=[2;2];Aeq=[];beq=[];VLB=[0;0];VUB=[];[x,z]=quadprog(H,c,A,b,Aeq,beq,VL
3、B,VUB)3、运算结果为:x=0.66671.3333z=-8.2222二、一般的非线性规划标准型为:minF(X)s.tAX<=bG(X)Ceq(X)=0VLBXVUB其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成的向量,其它变量的含义与线性规划、二次规划中相同.用Matlab求解上述问题,基本步骤分三步:1.首先建立M文件fun.m,定义目标函数F(X):functionf=fun(X);f=F(X);2.若约束条件中有非线性约束:G(X)或Ceq(X)=0,则建立M文件nonlcon.m定义函数G(X)与Ceq(X
4、):function[G,Ceq]=nonlcon(X)G=...Ceq=...3.建立主程序.非线性规划求解的函数是fmincon,命令的基本格式如下:(1)x=fmincon(‘fun’,X0,A,b)(2)x=fmincon(‘fun’,X0,A,b,Aeq,beq)(3)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB)(4)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’)(5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB
5、,’nonlcon’,options)(6)[x,fval]=fmincon(...)(7)[x,fval,exitflag]=fmincon(...)(8)[x,fval,exitflag,output]=fmincon(...)第二题:编程求解s.t.1、写成标准形式:s.t.2、先建立M-文件fun3.m:functionf=fun3(x);f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^23、再建立主程序youh2.m:x0=[1;1];A=[23;14];b=[6;5];Aeq=[];beq=[];
6、VLB=[0;0];VUB=[];[x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB)4、运算结果为:x=0.76471.0588fval=-2.0294第三题:求解s.t.x1+x2=01.5+x1x2-x1-x2<=0-x1x2–10<=01.先建立M文件fun4.m,定义目标函数:functionf=fun4(x);f=exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);2.再建立M文件mycon.m定义非线性约束:function[g,ce
7、q]=mycon(x)g=[x(1)+x(2);1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10];3.主程序youh3.m为:x0=[-1;1];A=[];b=[];Aeq=[11];beq=[0];vlb=[];vub=[];[x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon')4.运算结果为:x=-1.22501.2250fval=1.8951第四题:求下列非线性规划问题的K-T点:s.t.第五题:s.t.