反比例函数的性质-k的几何意义及应用

反比例函数的性质-k的几何意义及应用

ID:25290855

大小:436.50 KB

页数:17页

时间:2018-11-19

反比例函数的性质-k的几何意义及应用_第1页
反比例函数的性质-k的几何意义及应用_第2页
反比例函数的性质-k的几何意义及应用_第3页
反比例函数的性质-k的几何意义及应用_第4页
反比例函数的性质-k的几何意义及应用_第5页
资源描述:

《反比例函数的性质-k的几何意义及应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、P(m,n)AoyxP(m,n)AoyxByxOABCFE反比例函数中“k”的几何意义商丘市开发区二中叶会莹xyO如图,是y=6/x的图象,点P是图象上的一个动点。1、若P(1,y),则矩形OAPB的面积=_________P(1,y)BBAAABAP(5,y)P(3,y)2、若P(3,y),则矩形OAPB的面积=_________6663、若P(5,y),则矩形OAPB的面积=_________结论:从双曲线上任意一点向x、y轴分别作垂线段,两条垂线段与两坐标轴所围成的矩形的面积=︱k︱.想一想:若P(x,y),则矩形OAPB的面积=_

2、___6反比例函数与矩形面积P(m,n)Aoyx过P作x轴的垂线,垂足为A,则它与坐标轴形成的三角形的面积是不变的,为:推广:反比例函数与三角形面积PDoyx1.如图,点P是反比例函数图象上的一点,PD⊥x轴于D.则△POD的面积为.1一千里之行始于足下2.如图,点A,B是双曲线上的点,过点A、B两点分别向x轴、y轴作垂线,若S阴影=1,则S1+S2=xyABO4AA.S1=S2=S3B.S1S2>S3BA1oyxACB1C1S1S3S2xyOP1P2P3P412344.如图,在反比例函数的图象上

3、,有点,它们的横坐标依次为1,2,3,4.分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为,则(x>0).(x>0)思考:1.你能求出S2和S3的值吗?2.S1呢?1ByxPA1.已知点A是反比例函数上的点,过点A作AP⊥x轴于点P,已知△AOP的面积3,则k的值是()A.6B.-6C.-3D.3PCO♦像这样的图形变换叫等积变换二、趁热打铁,大显身手2.(2012辽宁)反比例函数与在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为( )A.B.2C.3D.1A

4、趁热打铁,大显身手(提高篇)C3.(2012湖北孝感)如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.E趁热打铁,大显身手(提高篇)4.(2011年陕西)如图,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数y=-和y=图象交于点A和点B.若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为()A.3B.4C.5D.6A趁热打铁,大显身手(提高篇)想一想xyOABC1、如图反比例函数y=12/x与正比例函数y=kx相交于点A、点B。(1)点A与点B关于_____对

5、称,相等的线段有________。(2)若点A的坐标是(a,b),则点B的坐标是_________点OOA=OB(-a,-b)(4)连接BC,则△OBC的面积是____,△ABC的面积是____D(3)AC⊥x轴,则△OAC的面积是____1266△ABD的面积是____4824四边形ADBE的面积是____E♦对称性反比例函数的图象是关于原点成中心对称的图形四.中考题型精选反比例函数中的面积问题以形助数用数解形课堂小结一个性质:反比例函数的面积不变性两种思想:分类讨论和数形结合yxoBEACD1若A(m,n)是反比例函数图象上的一动点,

6、其中0

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。