资源描述:
《数字信号处理实验报告》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、《数字信号处理》实验报告课程名称:《数字信号处理》学院:信息科学与工程学院专业班级:通信1502班学生姓名:侯子强学号:0905140322指导教师:李宏2017年5月28日实验一离散时间信号和系统响应一.实验目的1.熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2.掌握时域离散系统的时域特性3.利用卷积方法观察分析系统的时域特性4.掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1.采样是连续信号数字化处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后
2、信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z变换和序列傅里叶变换之间关系式的理解。对连续信号以T为采样间隔进行时域等间隔理想采样,形成采样信号:式中为周期冲激脉冲,为的理想采样。的傅里叶变换为:上式表明将连续信号采样后其频谱将变为周期的,周期为Ωs=2π/T。也即采样信号的频谱是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs为周期,周期延拓而成的。因此,若对连续信号进行采样,要保证采样频率fs≥2fm,fm为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号计算机实现时,利用计算机
3、计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而为采样序列的傅里叶变换2.时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。本实验仅在时域求解,对于差分方程可用Matlab中的工具箱函数filter()函数求解一个时域离散线性时不变系统的输出与输入间的关系为:可用Matlab中的工具箱函数conv()函数求解三、实验内容及步骤1.时域采样定理的验证给定模拟信号:式中。其幅频特性如图所示:选择三种采样频率F
4、s=1kHz,300Hz,200Hz,生成采样序列分别用序列表示。编写程序计算三个序列的幅频特性曲线,并绘图显示。观察在折叠频率附近与连续信号频谱有无明显差别,分析频谱混叠现象。实验程序如下%时域采样定理的验证%Fs=1KHzTp=64/1000;%Tp=64msFs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);%MµãFFTy
5、n='xa(nT)';subplot(3,2,1);stem(xnt);%»Í¼boxon;title('(a)Fs=1000Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk));title('(a)T*FT[xa(nT)],Fs=1000Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))])%Fs=300HzTp=64/1000;Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.12
6、8;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);stem(xnt);boxon;title('(a)Fs=300Hz');k=0:M-1;fk=k/Tp;subplot(3,2,2);plot(fk,abs(Xk),'r');title('(a)T*FT[xa(nT)],Fs=300Hz’);xlabel('f(Hz)');ylabel(‘幅度’);
7、axis([0,Fs,0,1.2*max(abs(Xk))])%Fs=200HzTp=64/1000;%64msFs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xnt=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xnt,M);yn='xa(nT)';subplot(3,2,1);stem(xnt,'.');boxon;title('(a)Fs=200Hz');k=0:M-1;fk=k/Tp;s
8、ubplot(3,2,2);plot(fk,abs(Xk));title('(a)T*FT[xa(nT)],Fs=200Hz');xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(ab