充分与必要条件说课和讲课

充分与必要条件说课和讲课

ID:25227283

大小:1.77 MB

页数:38页

时间:2018-11-16

充分与必要条件说课和讲课_第1页
充分与必要条件说课和讲课_第2页
充分与必要条件说课和讲课_第3页
充分与必要条件说课和讲课_第4页
充分与必要条件说课和讲课_第5页
资源描述:

《充分与必要条件说课和讲课》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2021/8/7说课2021/8/7教 学背景分析教 法学分法析教 学过程设计2021/8/7一、教学背景分析1、教材结构分析重要的数学概念之一贯穿于高中教学的始终.2、学情分析学习程度较浅,特别是逆否命题的运用不够熟悉.2021/8/73、教学目标知识目标能力目标情感目标正确理解充分条件必要条件充要条件的概念会观察敢归纳善建构乐学会学学会2021/8/7重点:理解充分条件、必要条件与充要条件的定义.难点:必要条件定义的理解.4、教学重点与难点2021/8/71、教法分析“开放式”、“启发式”教学加工:参与式生活化探

2、索性和谐、自主、个性化的发展.二、教法学法分析2021/8/72、学法分析通过生活中熟悉的常识和推断符号方向的判断,加深对充分条件、必要条件、充要条件的理解.使学生在思维训练的过程中,感受数学知识的魅力,成为学习的主人.2021/8/7提问:从数学的角度,鱼和水之间存在着什么关系?三、教学过程与设计第一、创设情境,激发兴趣,引出课题.2021/8/7第二、复习引导,给出定义紧紧抓住初中易懂的知识背景,逐步掌握推断符号的含义,引导、点拨、放大得出本节课所要学习的充分条件和必要条件的定义.下面请大家判断下列命题的真假:1

3、、若两三角形全等,则两三角形的面积相等.2、若a>b,则ac>bc.2021/8/7p:他是中学生;q:他是学生.以生活中的常识,模拟“逆否命题”的形式来加强对必要条件定义的理解.“教为不教,学为会学.”我用的第二个事例:p是q的充分条件,定义:已知q是p的必要条件。2021/8/7(2)主要是抓住推断符号的方向来判断,“授之以渔”,为接下来的充要条件的第三、深入探究,获得新知(1)利用具体的数学事例来强化并且有目的、有层次的设计例题,以便顺理成章的引出这节课的又一个重点:充要条件的学习。学习做好了铺垫.2021/8

4、/7例一:a、“开放式”教学,以学习小组为单位,课外编制关于充分条件、必要条件的命题.b、选择三组学生自编的原文出示,引导讨论,质疑解惑,在开放的情景中推进教学过程,在点评聚焦中形成知识要义,从而发展学生思维.c、分析各组题时,使学生养成找出p、q,利用推断符号方向判断的习惯,以突破学习难点.第四、应用举例,巩固提高2021/8/7例二:指出下列各组命题中p是q的什么条件(在“充分不必要”、“必要而不充分”、“充要条件”“既不充分也不必要”中选出一种)?(1)p:(x-2)(x-3)=0;q:x-2=0.(2)p:同

5、位角相等;q:两直线平行.(3)p:四边形的对角线相等;q:四边形是平行四边行.2021/8/7第五、总结反馈、拓展引申(一)、推断符号(二)、充分条件与必要条件真命题两者之间的逻辑关系必要条件定义的理解(三)、充要条件关键:推断符号的方向充分不必要必要而不充分充要条件既不充分也不必要2021/8/7§1.8.1充分条件与必要条件若p则q四、板书设计p:他是中学生q:他是学生1、2、3、“  ”4、突出重点pq2021/8/7课后作业1.课本第36页练习1(目的在于让学生能正确的使用数学符号)2.课本第36页练习2(

6、目的在于巩固知识,难度不大)2021/8/7§1.8.1充分条件与必要条件数学系06级一(2)班周毅鸿2021/8/7事例音乐欣赏提问:从数学的角度,鱼和水之间存在着什么关系?2021/8/7前面讨论了“若p则q”命题的真假,请判断下列命题的真假:命题1:两三角形全等;两三角形的面积相等.一、温故知新:命题1为真命题2为假命题2:若a>b;则ac>bc.p:q:若则2021/8/7二、新课1、推断符号pq命题1:若两三角形全等;则两三角形的面积相等.两三角形全等两三角形的面积相等pq2021/8/72、充分条件与必要

7、条件已知p是q的充分条件,q是p的必要条件.那么:注意:只适用于真命题的情况.命题二2021/8/7前面讨论了“若p则q”命题的真假,请判断下列命题的真假:命题1:三角形全等,三角形的面积相等.一、温故知新:命题1为真命题2为假命题2:若a>b,则ac>bc.p:q:2021/8/72、充分条件与必要条件已知p是q的充分条件,q是p的必要条件.那么:注意:只适用于真命题的情况.四种命题描述条件和结论之间的逻辑关系.怎样理解必要条件?2021/8/7原命题若p则q逆命题若q则p否命题若¬p则¬q逆否命题若¬q则¬p四种

8、命题的形式等价2021/8/72、充分条件与必要条件已知p是q的充分条件,q是p的必要条件.那么:注意:只适用于真命题的情况.描述条件和结论之间的逻辑关系.怎样理解必要条件?q是p成立的必要条件.命题一2021/8/7二、新课1、推断符号pq命题1:若两三角形全等;则两三角形的面积相等.两三角形全等两三角形的面积相等pq两三角形的面积相等是两三

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。