资源描述:
《洛必达法则在复变函数极限中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、洛必达法则在复变函数极限中的应用..毕业本文将高数中的洛必达法则推广到复变函数中来,给出复变函数中与高数中洛必达法则类同的法则.并且利用给出的洛必达法则更方便的求解复变函数的某些类型极限以及判定解析函数孤立奇点的类型.关键词:洛必达法则,孤立奇点的类型一、给出法则复变函数中的一些概念和结论是实函数中相应概念的推广,复变函数中关于复函数的极限,连续,可导,关于复级数,复积分等概念和一些重要结论都是高数中关于实函数的相应概念和结论从实数域到复数域的推广.众所周知,对实变函数中“未定式”的分析可以利用洛必达法则,那么对复变函数中的“未定式”是否有相应的洛必达法则?答案是肯定的.)一元
2、实函数的极限或只要求沿轴趋于或,而复变函数的极限或要求在复平面上按任意方式趋于或,这是实函数极限与复变函数极限的本质区别.但在复变函数中,在区域上可导,..毕业也就是在上解析,而解析函数有很好的性质,这对于研究复变函数“未定式”有很大的方便.在此,我们将复变函数中的洛必达法则归结如下:1.型(1)定理1:设复变函数在的去心邻域:内定义可导(即解析),且极限存在,则.(2)定理2:设复变函数在无穷远点的去心邻域:内可导(即解析),且,且极限存在,则.2.型(1)定理3:设复函数在的去心邻域内内解析,且,且极限存在,则.(2)定理4:设复函数在无穷远点的去心邻域:内解析,且,且极限
3、存在,则.3.其它不定式形如型的未定式,可以通过将它们化为或型来计算.二.法则应用1.高数中的洛必达法则,在求函数极限时发挥重要作用.而在复变函数中洛必达法则在复函数极限的计算中发挥重要作用,使一些不太容易解决的问题在应用了这个法则之后变得容易解决.例1求解:原式=例2求解:原式=例3求解:原式=(型)=(型)=例4求解:原式=注:洛必达法则仅是一个充分性条件的确定商式极限工具.当条件满足时,所求极限存在(或为),但当条件不满足时,不应当使用这一工具,但这并不等价于极限不存在,所以在使用洛必达法则时,必须每步检查一下是否为型或型的未定式,以避免解题错误.2.复变函数的洛必达法则
4、在判定解解析函数孤立奇点类型方面的应用一般复变函数论的教材均指出:是的可去奇点、极点和本性奇点的充要条件分别是:有限复常数,和不存在.所以,若已知是的孤立奇点,则此孤立奇点的类型与有关.(无穷远点亦可类似讨论)因此,我们可以在求时应用此法则,使问题简化.例1判定函数孤立奇点的类型解:是的孤立奇点,应用复变函数中的洛必达法则有:因为是有限复常数,根据可去奇点的充分必要条件知:是的可去奇点.例2判定函数的孤立奇点的类型解:为函数的孤立奇点.应用复变函数中的洛必达法则有:所以根据极点的充分必要条件知:为的极点.例3判定函数的孤立奇点的类型解:为的孤立奇点.因为而不存在所以为的可去奇点
5、,为的本性奇点.注:在运用复变函数的洛必达法则进行孤立奇点类型判定时,可遵循以下四个步骤:(1)找出给定解析函数的孤立奇点.(2)对各孤立奇点求极限,考察是否为型或型.(3)若是,可套用洛必达法则求极限,若是其他类型,可变形为型或型.(4)根据所求极限的结果判定孤立奇点的类型.