追击和相遇问题ppt

追击和相遇问题ppt

ID:24795701

大小:764.50 KB

页数:22页

时间:2018-11-15

追击和相遇问题ppt_第1页
追击和相遇问题ppt_第2页
追击和相遇问题ppt_第3页
追击和相遇问题ppt_第4页
追击和相遇问题ppt_第5页
资源描述:

《追击和相遇问题ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、追击与相遇问题www.jkzyw.com一、解题思路讨论追击、相遇的问题,其实质就是分析讨论两物体在相同时间内能否到达相同的空间位置的问题。1、两个关系:时间关系和位移关系2、一个条件:两者速度相等两者速度相等,往往是物体间能否追上,或两者距离最大、最小的临界条件,是分析判断的切入点。(1)追击甲一定能追上乙,v甲=v乙的时刻为甲、乙有最大距离的时刻判断v甲=v乙的时刻甲乙的位置情况①若甲在乙前,则追上,并相遇两次②若甲乙在同一处,则甲恰能追上乙③若甲在乙后面,则甲追不上乙,此时是相距最近的时候情况同上若

2、涉及刹车问题,要先求停车时间,以作判别!www.jkzyw.com(2)相遇①同向运动的两物体的追击即相遇②相向运动的物体,当各自位移大小之和等于开始时两物体的距离,即相遇(3)相撞两物体“恰相撞”或“恰不相撞”的临界条件:两物体在同一位置时,速度恰相同若后面的速度大于前面的速度,则相撞。3、解题方法(1)画清行程草图,找出两物体间的位移关系 (2)仔细审题,挖掘临界条件,联立方程 (3)利用二次函数求极值、图像法、相对运动知识求解例1.汽车正以10m/s的速度在平直公路上做匀速直线运动,突然发现正前方1

3、0m处有一辆自行车以4m/s的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为6m/s2的匀减速运动,问:(1)汽车能否撞上自行车?若汽车不能撞上自行车,汽车与自行车间的最近距离为多少?(2)汽车减速时,他们间距离至少多大不相撞?汽车在关闭油门减速后的一段时间内,其速度大于自行车速度,因此,汽车和自行车之间的距离在不断的缩小,当这距离缩小到零时,若汽车的速度减至与自行车相同,则能满足汽车恰好不碰上自行车v汽=10m/sv自=4m/s10m追上处a=-6m/s2分析:画出运动的示意图如图所示二、例题分

4、析解:(1)汽车速度减到4m/s时运动的时间和发生的位移分别为t=(v自-v汽)/a=(4-10)/(-6)s=1sx汽=(v自2-v汽2)/2a=(16-100)/(-12)=7m这段时间内自行车发生的位移x自=v自t=4m因为x0+x自>x汽所以,汽车不能撞上自行车。汽车与自行车间的最近距离为△x=x0+x自-x汽=(10+4-7)m=7m(2)要使汽车与自行车不相撞则汽车减速时它们之间的距离至少为x=x汽-x自=(7-4)m=3m例2、一车从静止开始以1m/s2的加速度前进,车后相距x0为25m处,

5、某人同时开始以6m/s的速度匀速追车,能否追上?如追不上,求人、车间的最小距离。解析:依题意,人与车运动的时间相等,设为t,当人追上车时,两者之间的位移关系为:x车+x0=x人即:at2/2+x0=v人t由此方程求解t,若有解,则可追上;若无解,则不能追上。代入数据并整理得:t2-12t+50=0△=b2-4ac=122-4×50×1=-56<0所以,人追不上车。x0v=6m/sa=1m/s2在刚开始追车时,由于人的速度大于车的速度,因此人车间的距离逐渐减小;当车速大于人的速度时,人车间的距离逐渐增大。因

6、此,当人车速度相等时,两者间距离最小。at′=v人t′=6s在这段时间里,人、车的位移分别为:x人=v人t=6×6=36mx车=at′2/2=1×62/2=18m△x=x0+x车-x人=25+18-36=7m例3:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?x汽x自△x方法一:公式法当汽车的速度与自行车的速度相等时,两车之间的距离最大

7、。设经时间t两车之间的距离最大。则x汽x自△x那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?方法二:图象法解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其图线与时间轴围成的三角形的面积。两车之间的距离则等于图中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三角形的面积之差最大。v/ms-1自行车汽车t/so6t0V-t图像的斜率表示物体的加速度当t=2s时两车的距离最大动态分析随着时间的推移,矩

8、形面积(自行车的位移)与三角形面积(汽车的位移)的差的变化规律α方法三:二次函数极值法设经过时间t汽车和自行车之间的距离Δx,则x汽x自△x那么,汽车经过多少时间能追上自行车?此时汽车的速度是多大?汽车运动的位移又是多大?www.jkzyw.com方法四:相对运动法选自行车为参照物,则从开始运动到两车相距最远这段过程中,以汽车相对地面的运动方向为正方向,汽车相对此参照物的各个物理量的分别为:v0=-6m/s,a=3m/s2,v

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。