高考函数问题的题型与解题方法

高考函数问题的题型与解题方法

ID:24645621

大小:50.50 KB

页数:4页

时间:2018-11-15

高考函数问题的题型与解题方法_第1页
高考函数问题的题型与解题方法_第2页
高考函数问题的题型与解题方法_第3页
高考函数问题的题型与解题方法_第4页
资源描述:

《高考函数问题的题型与解题方法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高考函数问题的题型与解题方法文/李嘉一、函数的概念型问题本部分的难点首先在于克服“函数就是解析式”的片面认识,真正明确不仅函数的对。应法则,而且其定义域都包含着对函数关系的制约作用,并真正以此作为处理问题的指导。其次在于确定函数三要素、求反函数等课题的综合性,不仅要用到解方程,解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合。(一)深化对函数概念的认识例1.下列函数中,不存在反函数的是()分析:处理本题有多种思路。此题作为选择题可采用估算的方法。对于D,y=3是其值域内一个值,但若y=3,则可能x=2(2>1),也可能x=

2、-1(-1≤-1)。依据概念,则易得出D中函数不存在反函数,于是决定本题选D。(二)系统小结确定函数三要素的基本类型与常用方法例2.已知函数f(x)定义域为(0,2),求下列函数的定义域:分析:x的函数f(x2)是由u=x2与f(u)这两个函数复合而成的复合函数,其中x是自变量,u是中间变量。由于f(x),f(u)是同一个函数,故(1)为已知0<u<2,即0<x2<2。求x的取值范围。二、考查函数的性质型问题1.对函数单调性和奇偶性定义的理解例3.下面四个结论:①偶函数的图象一定与y轴相交;②奇函数的图象一定通过原点;③偶函数的图象关于y

3、轴对称;④既是奇函数又是偶函数的函数一定是f(x)=0(x∈R),其中正确命题的个数是 ()A.1 B.2C.3D.4分析:偶函数的图象关于y轴对称,但不一定相交,因此③正确,①错误。奇函数的图象关于原点对称,但不一定经过原点,因此②不正确。若y=f(x)既是奇函数,又是偶函数,由定义可得f(x)=0,但不一定x∈R,如例1中的(3),故④错误,选A。三、函数综合应用1.准确理解、熟练运用,不断深化有关函数的基础知识例4.已知函数f(x),x∈F,那么集合{(x,y)

4、y=f(x),x∈F}∩{(x,y)

5、x=1}中所含元素的个数是。()

6、A.0B.1C.0或1D.1或2分析:这里首先要识别集合语言,并能正确把集合语言转化成熟悉的语言。从函数观点看,问题是求函数y=f(x),x∈F的图象与直线x=1的交点个数(这是一次数到形的转化),不少学生常误认为交点是1个,并说这是根据函数定义中“惟一确定”的规定得到的,这是不正确的,因为函数是由定义域、值域、对应法则三要素组成的。这里给出了函数y=f(x)的定义域是F,但未明确给出1与F的关系,当1∈F时有1个交点,当1不属于F时没有交点,所以选C。2.掌握研究函数的方法,提高研究函数问题的能力函数、方程、不等式是相互联系的。对于函数

7、f(x)与g(x),令f(x)=g(x),f(x)>g(x)或f(x)<g(x)则分别构成方程和不等式,对于某些方程、不等式的问题用函数观点认识是十分有益的。例5.方程lgx+x=3的解所在区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)分析:在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图2)。它们的交点横坐标,显然在区间(1,3)内,由此可排除A,D。至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了。实际上这是要比较与2的大小。当x=2时,lgx=lg2,3-x=1。由于lg2<1

8、,因此x0>2,从而判定x0∈(2,3),故本题应选C。(单位:江西省吉安市永新县禾川中学)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。