小学数学变通性思维能力之培养

小学数学变通性思维能力之培养

ID:24585477

大小:56.50 KB

页数:6页

时间:2018-11-15

小学数学变通性思维能力之培养_第1页
小学数学变通性思维能力之培养_第2页
小学数学变通性思维能力之培养_第3页
小学数学变通性思维能力之培养_第4页
小学数学变通性思维能力之培养_第5页
资源描述:

《小学数学变通性思维能力之培养》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、小学数学变通性思维能力之培养  小学数学变通性思维能力之培养    江苏新沂●刘丽    义务教育数学课程标准》指出:“数学课程要使学生掌握必备的基础知识和基本技能,培养学生的抽象思维和推理思维,培养学生的创新意识和实践能力。”思维的变通性是指人们能够从不同途径解决某个问题的能力,它不受固定模式的制约,也不受习惯思维方式的束缚。“一题多变”是培养学生变通性能力的好方法。    要想通过一题多变来培养学生的变通性思维,就要深入研究教材的多变因素。教师在教学中深入研究各个单元的多种因素,为学生创造题型多变的训练机会,这有助于对学生的思维变通性的培养。    例如:130乘以5的积,比1365除

2、以15的商多多少?想一想,这样一般的文字题,不能单纯地一解了之,要注意挖掘其内涵。这道文字题的叙述形式是多变的,教师在让学生理解本题题意的基础上,可以引导他们回答下列几种叙述方式:    (1)130乘以5的积,减去1365除以15的商,得多少?    (2)1365除以15的商,比130乘以5的积少多少?    (3)5乘130的积,比1365除以15的商多多少?    (4)130乘以5,比15除1365的商多多少?    (5)1365除以15的商,比5乘130的积少多少?    (6)15除1365的商,比130乘以5的积少多少?    (7)5乘130的积,比15除1365的商多

3、多少?    (8)15除1365的商,比5乘130的积少多少?    教师要注重引导学生掌握一题多变的规律,一题多变的训练是“一解一答”的升华,学生只有掌握了变异规律,才能举一反三。“一题多变”就是引导学生去发现规律。上述八种叙述形式,“形”变而“质”不变,它们的算式相同,均为:130×5=1365÷15。    同时,教师要善于引导学生对这些叙述形式进行归类,使他们发现并理解“多多少”“少多少”“得多少”等概念的内涵及外延,进而对这些概念由感性认识上升为理性认识。    再举一例:小学生对“圆”并不陌生,但他们对圆的内涵和外延的特征知道的并不多,特别是对“直径和半径”不但没有听说过,有

4、的还把“径”字读成“经”字。过去教学圆的直径,都是教师直接告诉学生:直径是通过圆心并且两端都在圆上的线段。这样的教学,学生始终处于被动地位,对直径并没有真正理解和认识。这种教学既不能调动学生学习的积极性,也不能培养教学的变通性思维和创新能力。经过反复学习和研究,我们采用了变通式的教学方法教学圆的直径。    1.第一次变通讨论    我们让每个学生从自己的学具袋里的许多图形中找出一个圆形,将这个圆形放在一张白纸上,用铅笔沿着圆的一周画出一个圆,再将这个圆剪下。用手将圆对折一下,讨论:发现了什么?(出现一道折痕)再对折一下,讨论:又发现了什么?(又出现了一道折痕,两道折痕相交于一点)第三次对

5、折一下,讨论:还能发现什么新的问题吗?最后再组织讨论:能折出多少道折痕?(无数道折痕)这些折痕有什么特点?    通过反复讨论,学生说出了下面这些特点:(1)在一个圆内能对折出无数条折痕。(2)这些折痕相交于一点。(3)这些折痕的长度都一样。(4)这些折痕都是一条线段。    为了证明讨论出的内容是正确的,我们对其中的“这些折痕的长度都一样”又组织讨论。通过测量,大家一致认为这是正确的。这时,教师第一次告诉学生:这些折痕就是圆的直径,相交的一点就叫做圆心。    虽然经过了第一次变通讨论学生知道了什么是直径,但这仅仅是直观上的感性阶段的认识。因此,我们又组织第二次变通讨论,着重从理论上认识

6、直径。    2.第二次变通讨论    于是,我们设计出下面的讨论题:用数学语言讨论什么叫做直径?直径有什么特点?经过讨论,学生又讨论下面的内容:    (1)直径是一条线段,并且是圆内最长的一条线段。(2)直径都通过圆心。(3)直径把圆平分成两份。(4)在同一个圆内,所有的直径长度都相等。(5)直径的两端都在圆上。    根据学生讨论出的内容,教师又要学生经过筛选,继续讨论:直径必须具备哪三个条件?    这样经过讨论,学生已经从理论上认识了直径,并且能用数学语言说出直径的意义。为了进一步深化直径的概念,在练习中我们再一次采用变通讨论法。    3.第三次变通讨论    下面图中哪些是直

7、径,哪些不是直径?并说明理由。    图1中不是直径,因为它虽然是一条线段,也通过圆心,但只是有一端在圆上。图2中不是直径,因为它虽然也是一条直线,也通过圆心,但两端都不在圆上。图3中不是直径,因为它虽然也是一条直线,并且两端都在圆上,但它没有通过圆心。图4中不是直径,因为它虽然通过圆心,两端都在圆上,但它不是一条线段。它们都不完全具备直径的三个条件。只有图5才是直径。    通过这样反复变通讨论,学生才真正理解了圆的直

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。