抛物线焦点弦的弦长公式

抛物线焦点弦的弦长公式

ID:24485617

大小:110.50 KB

页数:3页

时间:2018-11-14

抛物线焦点弦的弦长公式_第1页
抛物线焦点弦的弦长公式_第2页
抛物线焦点弦的弦长公式_第3页
资源描述:

《抛物线焦点弦的弦长公式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、关于抛物线焦点弦的弦长公式在高中教材第八章中有关于已知倾斜角的焦点弦,求焦点弦的弦长的问题,其中只介绍了开口向右时的焦点弦的长度计算问题:(1)已知:抛物线的方程为,过焦点F的弦AB交抛物线于AB两点,且弦AB的倾斜角为,求弦AB的长。解:由题意可设直线AB的方程为将其代入抛物线方程整理得:,且设A,B两点的坐标为则:,当时,斜率不存在,,

2、AB

3、=2p.即为通径而如果抛物线的焦点位置发生变化,则以上弦长公式成立吗?这只能代表开口向右时的弦长计算公式,其他几种情况不尽相同。现在我们来探讨这个问题。(2)已知:抛物线的方程为,过焦

4、点的弦AB交抛物线于A,B两点,直线AB倾斜角为,求弦AB的长。解:设A,B的坐标为,斜率为k,而焦点坐标为,故AB的方程为,将其代入抛物线的方程整理得:从而,弦长为:,即为通径。而与(1)的结果一样,与(2)的结果一样,但是(1)与(2)的两种表达式不一样,为了统一这两种不同的表达式,只须作很小的改动即可。现将改动陈述于下:(3)已知:抛物线的方程为,过焦点F的弦AB交抛物线于A,B两点,且弦AB与抛物线的对称轴的夹角为,求弦AB的长。解:由题意可设直线AB的方程为将其代入抛物线方程整理得:,若倾斜角,则;若倾斜角则。设A,B

5、两点的坐标为则:,而,故;当时,,

6、AB

7、=2p.即为通径。而与(3)的结果一样同理:(4)已知:抛物线的方程为,过焦点的弦AB交抛物线于A,B两点,直线AB与抛物线的对称轴的夹角为,求弦AB的长。解:设A,B的坐标为,若倾斜角为,斜率为k,则,而焦点坐标为,故AB的方程为,将其代入抛物线的方程整理得:从而,弦长为:当倾斜角,则;当倾斜角则所以恒成立。当时,,

8、AB

9、=2p.即为通径。而与(4)的结果一样。故只要直线AB与抛物线的对称轴的夹角为,那么不论抛物线的开口向上,向下,向左还是向右,过焦点的弦的弦长都可以用一个公式表示,

10、即。这个公式包含了抛物线的四种开口形式,没有了因为开口不同而导致的公式不同,便于记忆,便于应用,是一个很好的弦长公式,这里推荐给大家使用。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。