欢迎来到天天文库
浏览记录
ID:23454871
大小:97.50 KB
页数:8页
时间:2018-11-07
《[初三数学]教学设计二次函数所描述的关系》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、第二章二次函数1.二次函数所描述的关系广东省深圳市笋岗中学廖伟环一、学生知识状况分析学生的知识技能基础:学生在之前已经学习过变量、自变量、因变量、函数等概念,对一次函数、反比例函数的相关知识如:各种变量、函数的一般形式、图像、增减性等知识有一定基础,相关应用也较常见,学生在学二次函数前具备了一定函数方面的基础知识、基本技能。学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些解决实际问题活动,感受到了函数反映的是变化过程,并可通过列表、解析式、图像了解变化过程,对各种函数的表达方法的特点有所了解,获得了探究学习新函数知识的基础;同时在以前的学习
2、中学生经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。二、教学任务分析本课的具体学习任务:本节课要学习的内容是二次函数所描述的关系,重点是通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系,并能利用尝试求值的方法解决实际问题.让学生通过分析实际问题(探究橙子的数量与橙子树之间的关系),从学生感兴趣的问题入手,并广泛联系多学科问题,使学生好奇而愉快地感受二次函数的意义,感受数学的广泛联系和应用价值.在教学中,让学
3、生通过观察、思考、合作,交流,归纳出二次函数的概念,并从中体会函数的建模思想。教学目标(一)知识与技能1.探索并归纳二次函数的定义.2.能够表示简单变量之间的二次函数关系.(二)过程与方法81.经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.2.让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系.3.能够利用尝试求值的方法解决实际问题.(三)情感态度与价值观1.从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲.2.把数学问题和实际问题相联系,使学生初步体会
4、数学与人类生活的密切联系及对人类历史发展的作用.3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思维的过程,培养大家的合作意识.教学重点:二次函数的概念教学难点:经历探索,分析和建立两个变量之间的二次函数关系的过程三、教学过程分析本节课设计了七个教学环节:课前准备、创设问题情境引入新课、想一想、做一做、归纳小结、课堂反馈、布置作业。第一环节课前准备活动内容:引导学生复习函数的概念及已经学习过的几种函数:1.对“函数”这个词我们并不陌生,大家还记得我们学过哪些函数吗?我们学过那些关于函数的生活实际问题呢?2.函数的定义是怎样下的?3.让我
5、们一起来回忆一下这些函数的一般形式。8函数变量之间的关系一次函数y=kx+b(k≠0)反比例函数正比例函数y=kx(k≠0)活动目的:函数是对初中生来说是较抽象的概念,而且学生距离之前学习函数相关内容有较长时间间隔,这里有必要从学生已有的知识经验出发,学习新的内容,注重知识之间的联系,调动学生学习的积极性与主动性,也为接下来的学习作好铺垫。实际教学效果:通过“温故”又可重新唤起学生对变量、自变量、因变量、函数等概念的理解,在回顾以前学习过的具体实例中能更好的帮助学生了解“函数”本质所在,而同学们比较熟悉的一次函数、反比例函数更能让他们回忆学习函数的过程
6、。第二环节创设问题情境,引入新课活动内容:投影片:(§2.1A)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量?其中哪些是自变量?哪些是因变量?(2)假设果园增种x棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?(3)如果果园橙子的总产量为y个,那么请你写出y与x之间的关系式.(4)大家根据刚才的分析,判断一下上式中的y是否是x的函数?若是函数,与原来学过的函
7、数相同吗?请大家先独立思考,再互相交流后回答8活动目的:此处提问时先由学生思考哪些是变量,等学生思考并回答后再提问哪些是自变量,哪些是因变量。这样设计问题由简单到复杂,逐步推进,同时也可让学生初步体会到问题中所蕴涵着的函数关系。探究橙子的数量与橙子树之间的关系、及用关系式表示这一关系的过程,为引出二次函数的概念作铺垫,使学生感受二次函数与生活的密切联系。第(4)个问题让学生初次接触到本节课所要学习的新函数,为下面的学习作了一引子。实际教学效果:学生在一个实际问题中第二次回忆起几种变量,及时对第一环节的“温故”进行反馈,而问题的设置由浅入深,学生在初三再
8、学习函数有了好的开端,问题中的变化过程也恰好反映了函数本质所在,学生在不知不觉中也在复习函数的
此文档下载收益归作者所有