(最新最全)实数经典例题+习题(全word已整理)

(最新最全)实数经典例题+习题(全word已整理)

ID:23428676

大小:299.50 KB

页数:12页

时间:2018-11-07

(最新最全)实数经典例题+习题(全word已整理)_第1页
(最新最全)实数经典例题+习题(全word已整理)_第2页
(最新最全)实数经典例题+习题(全word已整理)_第3页
(最新最全)实数经典例题+习题(全word已整理)_第4页
(最新最全)实数经典例题+习题(全word已整理)_第5页
资源描述:

《(最新最全)实数经典例题+习题(全word已整理)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、WORD格式可编辑经典例题类型一.有关概念的识别  1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()  A、1   B、2   C、3   D、4  解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数  故选C  举一反三:  【变式1】下列说法中正确的是()  A、的平方根是±3 B、1的立方根是±1 C、=±1 D、是5的平方根的相反数  【答案】本题主要考察平方根、算术平方根、立方根的概念,      ∵=9,9的平方根是±3,∴A正确. 

2、     ∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.  【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()                   A、1   B、1.4   C、   D、  【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知

3、AO

4、=,∴A表示数为,故选C.  【变式3】  【答案】∵π=3.1415…,∴9<3π<10      因此3π-9>0,3π-1

5、0<0      ∴类型二.计算类型题  2.设,则下列结论正确的是()  A.      B.专业技术资料分享WORD格式可编辑  C.      D.  解析:(估算)因为,所以选B  举一反三:  【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________.3)___________,___________,___________.  【答案】1);.2)-3.3),,  【变式2】求下列各式中的  (1)   (2)    (3)  【答案】(1)(

6、2)x=4或x=-2(3)x=-4类型三.数形结合  3.点A在数轴上表示的数为,点B在数轴上表示的数为,则A,B两点的距离为______  解析:在数轴上找到A、B两点,  举一反三:  【变式1】如图,数轴上表示1,的对应点分别为A,B,点B关于点A的对称点为C,则点C表示的数是().                  A.-1B.1-C.2-D.-2  【答案】选C  [变式2]已知实数、、在数轴上的位置如图所示:                  化简  【答案】:类型四.实数绝对值的应用专业技术资料分享WORD格式

7、可编辑  4.化简下列各式:  (1)

8、-1.4

9、   (2)

10、π-3.142

11、  (3)

12、-

13、   (4)

14、x-

15、x-3

16、

17、(x≤3)  (5)

18、x2+6x+10

19、  分析:要正确去掉绝对值符号,就要弄清绝对值符号内的数是正数、负数还是零,然后根据绝对值的定义正确去掉绝对值。  解:(1)∵=1.414…<1.4     ∴

20、-1.4

21、=1.4-    (2)∵π=3.14159…<3.142     ∴

22、π-3.142

23、=3.142-π    (3)∵<,∴

24、-

25、=-    (4)∵x≤3,∴x-3≤0,     ∴

26、x

27、-

28、x-3

29、

30、=

31、x-(3-x)

32、          =

33、2x-3

34、=  说明:这里对

35、2x-3

36、的结果采取了分类讨论的方法,我们对这个绝对值的基本概念要有清楚的认识,并能灵活运用。  (5)

37、x2+6x+10

38、=

39、x2+6x+9+1

40、=

41、(x+3)2+1

42、    ∵(x+3)2≥0,∴(x+3)2+1>0    ∴

43、x2+6x+10

44、=x2+6x+10  举一反三:  【变式1】化简:  【答案】=+-=类型五.实数非负性的应用  5.已知:=0,求实数a,b的值。  分析:已知等式左边分母不能为0,只能有>0,则要求a+

45、7>0,分子专业技术资料分享WORD格式可编辑+

46、a2-49

47、=0,由非负数的和的性质知:3a-b=0且a2-49=0,由此得不等式组从而求出a,b的值。  解:由题意得    由(2)得a2=49∴a=±7    由(3)得a>-7,∴a=-7不合题意舍去。    ∴只取a=7    把a=7代入(1)得b=3a=21    ∴a=7,b=21为所求。  举一反三:  【变式1】已知(x-6)2++

48、y+2z

49、=0,求(x-y)3-z3的值。  解:∵(x-6)2++

50、y+2z

51、=0    且(x-6)2≥0,≥0,

52、y+

53、2z

54、≥0,    几个非负数的和等于零,则必有每个加数都为0。    ∴解这个方程组得    ∴(x-y)3-z3=(6-2)3-(-1)3=64+1=65  【变式2】已知那么a+b-c的值为___________  【答案】初中阶段的三个非负数:,      a=2,b=-5,c=-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。