人教版九年级数学上册第二十四章圆知识点总结

人教版九年级数学上册第二十四章圆知识点总结

ID:23211234

大小:236.50 KB

页数:5页

时间:2018-11-04

人教版九年级数学上册第二十四章圆知识点总结_第1页
人教版九年级数学上册第二十四章圆知识点总结_第2页
人教版九年级数学上册第二十四章圆知识点总结_第3页
人教版九年级数学上册第二十四章圆知识点总结_第4页
人教版九年级数学上册第二十四章圆知识点总结_第5页
资源描述:

《人教版九年级数学上册第二十四章圆知识点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第二十四章圆24.1圆24.1.1圆知识点一圆的定义圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。固定的端点O叫作圆心,线段OA叫作半径。第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。知识点二圆的相关概念(1)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。(2)弧:圆上任意两

2、点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。(3)等圆:等够重合的两个圆叫做等圆。(4)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。24.1.2垂直于弦的直径知识点一圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴。知识点二垂径定理(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径为CD,AB是弦,

3、且CD⊥AB,CMAM=BMAB垂足为MAC=BCAD=BDD垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧如上图所示,直径CD与非直径弦AB相交于点M,CD⊥ABAM=BMAC=BCAD=BD注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。24.1.3弧、弦、圆心角知识点弦、弧、圆心角的关系(1)弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。(2)在同圆或等圆中,如果两个圆心角,两

4、条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。(3)注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。24.1.4圆周角知识点一圆周角定理(1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。(2)圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径。(3)圆周角定理揭示了同弧或等弧所对的圆周角与圆心角的大小关系。

5、“同弧或等弧”是不能改为“同弦或等弦”的,否则就不成立了,因为一条弦所对的圆周角有两类。知识点二圆内接四边形及其性质圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。圆内接四边形的性质:圆内接四边形的对角互补。24.2点、直线、圆和圆的位置关系24.2.1点和圆的位置关系知识点一点与圆的位置关系(1)点与圆的位置关系有:点在圆外,点在圆上,点在圆内三种。(2)用数量关系表示:若设⊙O的半径是r,点P到圆的距离OP=d,则有:点P在圆外d>

6、r;点p在圆上d=r;点p在圆内d<r。知识点二过已知点作圆(1)经过一个点的圆(如点A)以点A外的任意一点(如点O)为圆心,以OA为半径作圆即可,如图,这样的圆可以作无数个。·O1A·O2·O3(2)经过两点的圆(如点A、B)以线段AB的垂直平分线上的任意一点(如点O)为圆心,以OA(或OB)为半径作圆即可,如图,这样的圆可以作无数个。AB(3)经过三点的圆①经过在同一条直线上的三个点不能作圆②不在同一条直线上的三个点确定一个圆,即经过不在同一条直线上的三个点可以作圆,且只能作一个圆。如经过不在同

7、一条直线上的三个点A、B、C作圆,作法:连接AB、BC(或AB、AC或BC、AC)并作它们的垂直平分线,两条垂直平分线相交于点O,以点O为圆心,以OA(或OB、OC)的长为半径作圆即可,如图,这样的圆只能作一个。③AOBC知识点三三角形的外接圆与外心(1)经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆。(2)外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。知识点四反证法(1)反证法:假设命题的结论不成立,经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这

8、种证明命题的方法叫做反证法。(2)反证法的一般步骤:①假设命题的结论不成立;②从假设出发,经过逻辑推理,推出或与定义,或与公理,或与定理,或与已知等相矛盾的结论;③由矛盾判定假设不正确,从而得出原命题正确。24.2.2直线和圆的位置关系知识点一直线与圆的位置关系(1)直线与圆的位置关系有:相交、相切、相离三种。(2)直线与圆的位置关系可以用数量关系表示若设⊙O的半径是r,直线l与圆心0的距离为d,则有:直线l和⊙O相交d<r;直线l和⊙O相切d=r;直线l和⊙O相离d

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。