(整理)中考数学几何图形旋转试题经典问题及解答

(整理)中考数学几何图形旋转试题经典问题及解答

ID:23014425

大小:76.00 KB

页数:5页

时间:2018-11-02

上传者:U-2595
(整理)中考数学几何图形旋转试题经典问题及解答_第1页
(整理)中考数学几何图形旋转试题经典问题及解答_第2页
(整理)中考数学几何图形旋转试题经典问题及解答_第3页
(整理)中考数学几何图形旋转试题经典问题及解答_第4页
(整理)中考数学几何图形旋转试题经典问题及解答_第5页
资源描述:

《(整理)中考数学几何图形旋转试题经典问题及解答》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

几何图形旋转常见问题   一、填空题  1.如图1,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于     .    2.如图2,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那么此三角板向右平移的距离是    cm.3.正△ABC的边长为3cm,边长为1cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA顺时针连续翻转(如图3所示),直至点P第一次回到原来的位置,则点P运动路径的长为    cm.4.如图4,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连结AE,CE,则△ADE的面积是     .  二、解答题  5.如图5-1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.  (1)求证:BP=DP;  (2)如图5-2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.   6.如图6-1是一个美丽的风车图案,你知道它是怎样画出来的吗?按下列步骤可画出这个风车图案:在图6-2中,先画线段OA,将线段OA平移至CB处,得到风车的第一个叶片F1,然后将第一个叶片OABC绕点O逆时针旋转180°得到第二个叶片F2,再将F1、F2同时绕点O逆时针旋转90°得到第三、第四个叶片F3、F4.根据以上过程,解答下列问题:  (1)若点A的坐标为(4,0),点C的坐标为(2,1),写出此时点B的坐标;  (2)请你在图6-2中画出第二个叶片F2;  (3)在(1)的条件下,连接OB,由第一个叶片逆时针旋转180°得到第二个叶片的过程中,线段OB扫过的图形面积是多少?  7.如图7,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数).  (1)求点P6的坐标;  (2)求△P5OP6的面积;(3)我们规定:把点Pn(xn,yn)(n=0,1,2,3,…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来.  8.把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图8).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.   9.如图9-1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图9-2),  量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角形纸片摆成如图9-3的形状,但点B、C、F、D在同一条直线上,且点C与点F重合(在图9-3至图9-6中统一用F表示) 图9-1         图9-2          图9-3  小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.  (1)将图9-3中的△ABF沿BD向右平移到图9-4的位置,使点B与点F重合,请你求出平移的距离;  (2)将图9-3中的△ABF绕点F顺时针方向旋转30°到图9-5的位置,A1F交DE于点G,请你求出线段FG的长度;  (3)将图9-3中的△ABF沿直线AF翻折到图9-6的位置,AB1交DE于点H,请证明:AH﹦DH. 图9-4       图9-5     图9-6 参考答案  一、1. 2.6-2 3.2π 4.1  二、  5.解:(1)解法一:在△ABP与△ADP中,利用全等可得BP=DP.  解法二:利用正方形的轴对称性,可得BP=DP.  (2)不是总成立.  当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立.  (3)连接BE、DF,则BE与DF始终相等.  在图1-1中,可证四边形PECF为正方形,  在△BEC与△DFC中,可证△BEC≌△DFC.  从而有BE=DF.    6.解:(1)B(6,1)   (2)图略   (3)线段OB扫过的图形是一个半圆.过B作BD⊥x轴于D.由(1)知B点坐标为(6,1),∴OB2=OD2+BD2=62+12=37.∴线段OB扫过的图形面积是.  7.解:(1)根据旋转规律,点P6落在y轴的负半轴,而点Pn到坐标原点的距离始终等于前一个点到原点距离的倍,故其坐标为P6(0,26),即P6(0,64).  (2)由已知可得,  △P0OP1∽△P1OP2∽…∽△Pn-1OPn,  设P1(x1,y1),则y1=2sin45°=,∴.  又∵,  ∴.  (3)由题意知,OP0旋转8次之后回到x轴正半轴,在这8次中,点Pn分别落在坐标象限的平分线上或x轴或y轴上,但各点绝对坐标的横、纵坐标均为非负数,因此,点Pn的坐标可分三类情况:令旋转次数为n.  ①当n=8k或n=8k+4时(其中k为自然数),点Pn落在x轴上,此时,点Pn的绝对坐标为(2n,0);  ②当n=8k+1或n=8k+3或n=8k+5或n=8k+7时(其中k为自然数),点Pn落在各象限的平分线上,  此时,点Pn的绝对坐标为,即.  ③当n=8k+2或n=8k+6时(其中k为自然数),点Pn落在y轴上,此时,点Pn的绝对坐标为(0,2n).  8.解:HG=HB.   证法1:连结AH(如图10).  ∵四边形ABCD,AEFG都是正方形,  ∴∠B=∠G=90°.  由题意,知AG=AB,又AH=AH,  ∴Rt△AGH≌Rt△ABH(HL).  ∴HG=HB.  证法2:连结GB(如图11).  ∵四边形ABCD,AEFG都是正方形,  ∴∠ABC=∠AGF=90°.  由题意知AB=AG.  ∴∠AGB=∠ABG.  ∴∠HGB=∠HBG.  ∴HG=HB.  9.解:(1)图形平移的距离就是线段BC的长.  ∵在Rt△ABC中,斜边长为10cm,∠BAC=30°,∴BC=5cm.  ∴平移的距离为5cm.(2分)  (2)∵∠A1FA=30°,∴∠GFD=60°.又∠D=30°,  ∴∠FGD=90°.  在Rt△EFD中,ED=10cm,∴.  ∵FG=cm.  (3)在△AHE与△DHB1中,∠FAB1=∠EDF=30°.  ∵FD=FA,EF=FB=FB1,  ∴FD-FB1=FA-FE,即AE=DB1.  又∵∠AHE=∠DHB1,∴△AHE≌△DHB1(AAS).  ∴AH=DH.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭