高中数学好题经典,有难度

高中数学好题经典,有难度

ID:22991499

大小:2.06 MB

页数:64页

时间:2018-11-02

高中数学好题经典,有难度_第1页
高中数学好题经典,有难度_第2页
高中数学好题经典,有难度_第3页
高中数学好题经典,有难度_第4页
高中数学好题经典,有难度_第5页
资源描述:

《高中数学好题经典,有难度》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、WORD格式可编辑1;设函数的图象在点处的切线的斜率为,且函数为偶函数.若函数满足下列条件:①;②对一切实数,不等式恒成立.(Ⅰ)求函数的表达式;(Ⅱ)求证:.(Ⅰ)解:由已知得:.              ……………1分由为偶函数,得为偶函数,显然有.                                         …………2分又,所以,即.              …………3分又因为对一切实数恒成立,即对一切实数,不等式恒成立.    …………4分专业技术资料整理分享WORD格式可编辑显然,当时,不符合题意.                          …………5

2、分当时,应满足注意到,解得.                      …………7分所以.                           ……………8分(Ⅱ)证明:因为,所以.………9分要证不等式成立,即证.                    …………10分因为,                …………12分所以专业技术资料整理分享WORD格式可编辑.所以成立.                ……………14分2;已知函数:(1)讨论函数的单调性;(2)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,函数在区间上总存在极值? (3)求证:.解:(1)      (1分),当时

3、,的单调增区间为,减区间为;…………2分当时,的单调增区间为,减区间为;…………3分当时,不是单调函数…………4分(2)因为函数的图像在点处的切线的倾斜角为,      所以,所以,,  ……………..…6分专业技术资料整理分享WORD格式可编辑      ,       …………………………………….……7分      要使函数在区间上总存在极值,所以只需,                ………………ks5u……..……9分            解得………………………………………………………10分⑶令此时,所以,由⑴知在上单调递增,∴当时,即,∴对一切成立,………12分∵,则有,∴…………

4、14分来源:江西省重点中学协作体2012届高三联考(数学理)已知函数=,.(Ⅰ)求函数在区间上的值域;(Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;专业技术资料整理分享WORD格式可编辑(Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”,并说明理由. 解:(Ⅰ)  在区间上单调递增,在区间上单调递减,且        的值域为     ………………3分(Ⅱ)令,则由(Ⅰ)可得,原问题等价于:对任意的在上总有两个不同的实根,故在不可能是

5、单调函数 …………………5分   当时,,.s在区间上递减,不合题意当时,,在区间上单调递增,不合题意当时,,在区间上单调递减,不合题意当即时,在区间上单调递减;在区间上单递增,由上可得,此时必有的最小值小于等于0而由可得,则综上,满足条件的不存在。………………………..8分专业技术资料整理分享WORD格式可编辑(Ⅲ)设函数具备性质“”,即在点处的切线斜率等于,不妨设,则,而在点处的切线斜率为,故有………………10分即,令,则上式化为,………………12分令,则由可得在上单调递增,故,即方程无解,所以函数不具备性质“”.……………………14分3;已知a>0,函数.(Ⅰ)设曲线在点(1,f(1))

6、处的切线为,若与圆相切,求a的值;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)求函数f(x)在[0,1]上的最小值.解:(Ⅰ)依题意有     过点的切线的斜率为,专业技术资料整理分享WORD格式可编辑    则过点的直线方程为………………………………………2分    又已知圆的圆心为(-1,0),半径为1    ∴,解得………………………………………………………4分(Ⅱ) ∵,∴ 令解得,令,解得 所以的增区间为,减区间是………………………………8分(Ⅲ)当,即时,在[0,1]上是减函数 所以的最小值为…………………………………………………………9分 ‚当即时 在上是增函数,在是减函数………………

7、…………………10分所以需要比较和两个值的大小因为,所以专业技术资料整理分享WORD格式可编辑∴当时最小值为a,当时,最小值为………………………………………………………12分ƒ当,即时,在[0,1]上是增函数所以最小值为…………………………………………………………………13分综上,当时,为最小值为a当时,的最小值为.……………………………………………………14分·难度:使用次数:25入库时间:20

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。