飞思卡尔--智能车传感器的排布

飞思卡尔--智能车传感器的排布

ID:22990288

大小:342.50 KB

页数:14页

时间:2018-11-02

飞思卡尔--智能车传感器的排布_第1页
飞思卡尔--智能车传感器的排布_第2页
飞思卡尔--智能车传感器的排布_第3页
飞思卡尔--智能车传感器的排布_第4页
飞思卡尔--智能车传感器的排布_第5页
资源描述:

《飞思卡尔--智能车传感器的排布》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、4.1光感器的路径精确识别技术在智能车系统中,光电(激光)传感器就是整个系统的“眼睛”,其对于路径的识别在控制系统中尤为重要。4.1.1光电传感器路径识别状态分析由于往届竞赛对光电传感器排布方式研究已经比较深入,传统的“一”字型排布方式在众多排布方式中效果显著,是最常用的一种排布方式。模型车也充分利用了往年的成熟的传感器技术,其排布方式如图5.1。图4.1模型车激光传感器一字排布图对于我们模型车,传感器在赛道上可能的状态有:在普通的赛道处、在起点处、在十字交叉线处,分别如下图(并未列出所有的状态图),下面将分别

2、进行分析。图4.2激光传感器在普通赛道上图4.3激光传器在起点处图4.4激光传感器在十字交叉线处为了识别赛车是处于什么样状态下,用于进行赛道记忆和速度控制,对于我们的数字型激光传感器,每个传感器只有0与1两种状态,我们分别把14路传感器标记为1到14号传感器,每个传感器又可以对应一个是否在黑线上的标志位,分别为Sen_Flag[0]到Sen_Flag[13],相应在黑线上为1,不在黑线上为0,从而通过对任一时刻传感器标志位的读取就可以知道此时模型车的状态。为了精确地识别起跑线和十字交叉线,在程序设计时还定义了一

3、个名为Sen_ChangeCount的变量,表示传感器状态变化(由1变为0和由0变为1)的次数。从上面的传感器状态图中可以轻松看出,在普通赛道上出除了赛车移出赛道之外传感器变化次数都为2次,而在起跑线处模型车的传感器状态变化次数为4次,在十字交叉线时传感器状态变化次数为0次。为了进一步把各种状态分开,在程序中还定义了变量Sen_FlagCount,用于统计所有传感器状态标志位之和,即在黑线上的传感器的数目。结合以上几个变量,就可以准确地分清各个传感器状态了。各个传感器状态如下表:表4.1传感器状态判定表模型车状

4、态Sen_ChangeCountSen_FlagCount起跑线处4>=8且<=11十字交叉线处0=14在普通赛道上未移出黑线2>=1且<=3在普通赛道上移出黑线00通过上表,就可以轻松地把模型车任一时刻的传感器状态识别出来,也为赛道记忆识别起点等提供的必要的保障。4.3.2双排排列与前瞻设计红外传感器排列方式有多种:(1)一字排列。电路简单,算法相对也不复杂。但是这种排列方法使智能车的前瞻性不远,导致智能车不能更快地发现前面的路况,不利于控制策略提早做出反应,影响其加速和减速。(2)八字排列。相对于一字排列前

5、瞻性有一定提高,由于智能车是在控制电路作用下循线行使,所以前瞻性对于智能车的控制有很大影响。(3)W字排列。前瞻性和检测弯道能力均较好。跑道有交叉,直道,弯道等多种形式,所以智能车过弯的平滑性和有效性将对智能车能否在更短时间顺利完成比赛有重要影响。由于传感器我们使用的是模拟式识别方案,需对数据做归一化处理,若采用八字或W字型排列,各光电管不在同一直线上,就不能以相同的标准作归一化处理,这将大大增加数据处理的复杂性。我们选择了13路传感器,分为两排,均采用“一字排列”的布局。前排传感器位于智能车的最前方,由八个传

6、感器对称排列,不均匀分布(如图4.5),具体间隔由测试决定,这排传感器完成前方赛道信息的检测,同时在安装上我们将其设计成抬起与地面形成一个夹角(如图4.5所示)这样小车前瞻距离提高到了d。虽然探出距离与前瞻距离成正比,但是除比赛限制了车的长度外,同时由于红外传感器数目较多,再加上电路板的重量,将使智能车的重心前移,所以要选择适当的探出距离,具体距离需由测试决定,我们小车的前瞻有40cm。图4.5前排传感器排列图d图4.6前排传感器安装示意图而后排5个传感器主要用于对赛道始点进行识别,此内容将在软件部分详细说明。

7、3.3.1路径检测单元在确定智能车总体方案时,本次选择光电传感器作为路径检测单元。光电传感器检测路径的方案一般由多对红外收发管组成,通过检测接收到的反射光强,判断黑白线。在这种方案中,一个红外对管只能检测一个点的信息,精度有限。但其优点是电路简单,处理方便。为了获得更大的前瞻距离,我们采用了可实现大前瞻激光传感器。激光传感器与普通的光电传感器原理都是一样,但是其前瞻能力远大于普通的光电传感器,可以达到40-70cm。应用大于60cm的远距离前瞻以后还有个问题是赛道中的大弯道无法通过,因为在过如180度的弯道时,

8、远前瞻会全部看出跑道,检测不到任何赛道信息,因此还应用相同的技术制作了工作距离约为10cm的中距离前瞻。本设计中使用了40cm的远前瞻和10cm的近前瞻。我们使用的10cm近前瞻如图3-11所示:图3-11近前瞻第五章光电传感器的选择和设计排布由于赛道具体信息还不知道,所以必须选择合适的路面信息检测传感器。通过查阅相关资料,了解到目前常用的寻线技术有:光电寻线、磁诱导寻线和摄像头寻线。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。