函数的单调性练习题(含答案)

函数的单调性练习题(含答案)

ID:22980169

大小:165.51 KB

页数:5页

时间:2018-11-02

函数的单调性练习题(含答案)_第1页
函数的单调性练习题(含答案)_第2页
函数的单调性练习题(含答案)_第3页
函数的单调性练习题(含答案)_第4页
函数的单调性练习题(含答案)_第5页
资源描述:

《函数的单调性练习题(含答案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、函数的单调性练习一、选择题:1.在区间(0,+∞)上不是增函数的函数是()A.y=2x+1B.y=3x2+1C.y=D.y=2x2+x+12.函数f(x)=4x2-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f(1)等于()A.-7B.1C.17D.253.函数f(x)在区间(-2,3)上是增函数,则y=f(x+5)的递增区间是()A.(3,8)B.(-7,-2)C.(-2,3)D.(0,5)4.函数f(x)=在区间(-2,+∞)上单调递增,则实数a的取值范围是()A.(

2、0,)B.(,+∞)C.(-2,+∞)D.(-∞,-1)∪(1,+∞)5.已知函数f(x)在区间[a,b]上单调,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]内()A.至少有一实根B.至多有一实根C.没有实根D.必有唯一的实根6.已知函数f(x)=8+2x-x2,如果g(x)=f(2-x2),那么函数g(x)()A.在区间(-1,0)上是减函数B.在区间(0,1)上是减函数C.在区间(-2,0)上是增函数D.在区间(0,2)上是增函数7.已知函数f(x)是R上的增函数,A(0,-1)、B

3、(3,1)是其图象上的两点,那么不等式

4、f(x+1)

5、<1的解集的补集是()A.(-1,2)B.(1,4)C.(-∞,-1)∪[4,+∞)D.(-∞,-1)∪[2,+∞)8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是()A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13)D.f(13)<f(-1)<f(9)9.函数的递增区间依次是()A.B.C.D5--10.已

6、知函数在区间上是减函数,则实数的取值范围是()A.a≤3B.a≥-3C.a≤5D.a≥311.已知f(x)在区间(-∞,+∞)上是增函数,a、b∈R且a+b≤0,则下列不等式中正确的是()A.f(a)+f(b)≤-f(a)+f(b)]B.f(a)+f(b)≤f(-a)+f(-b)C.f(a)+f(b)≥-f(a)+f(b)]D.f(a)+f(b)≥f(-a)+f(-b)12.定义在R上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则()A.f(-1)<f(3)B.

7、f(0)>f(3)C.f(-1)=f(-3)D.f(2)<f(3)二、填空题:13.函数y=(x-1)-2的减区间是____.14.函数y=x-2+2的值域为_____.15、设是上的减函数,则的单调递减区间为.16、函数f(x)=ax2+4(a+1)x-3在[2,+∞]上递减,则a的取值范围是__.三、解答题:17.f(x)是定义在(0,+∞)上的增函数,且f()=f(x)-f(y)(1)求f(1)的值.(2)若f(6)=1,解不等式f(x+3)-f()<2.18.函数f(x)=-x3+1在R上是否

8、具有单调性?如果具有单调性,它在R上是增函数还是减函数?试证明你的结论.19.试讨论函数f(x)=在区间[-1,1]上的单调性.5--20.设函数f(x)=-ax,(a>0),试确定:当a取什么值时,函数f(x)在0,+∞)上为单调函数.21.已知f(x)是定义在(-2,2)上的减函数,并且f(m-1)-f(1-2m)>0,求实数m的取值范围.22.已知函数f(x)=,x∈[1,+∞](1)当a=时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞,f(x)>0恒成立,试求实数a的取值范围.5--

9、参考答案一、选择题:CDBBDADCCABA二、填空题:13.(1,+∞),14.(-∞,3),15.,三、解答题:17.解析:①在等式中,则f(1)=0.②在等式中令x=36,y=6则故原不等式为:即f[x(x+3)]<f(36),又f(x)在(0,+∞)上为增函数,故不等式等价于:18.解析:f(x)在R上具有单调性,且是单调减函数,证明如下:设x1、x2∈(-∞,+∞),x1<x2,则f(x1)=-x13+1,f(x2)=-x23+1.f(x1)-f(x2)=x23-x13=(x2-x1)(x1

10、2+x1x2+x22)=(x2-x1)[(x1+)2+x22].∵x1<x2,∴x2-x1>0而(x1+)2+x22>0,∴f(x1)>f(x2).∴函数f(x)=-x3+1在(-∞,+∞)上是减函数.19.解析:设x1、x2∈-1,1]且x1<x2,即-1≤x1<x2≤1.f(x1)-f(x2)=-==∵x2-x1>0,>0,∴当x1>0,x2>0时,x1+x2>0,那么f(x1)>f(x2).当x1<0,x2<0时,x1+x2<0,那么f(x1)<f

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。