欢迎来到天天文库
浏览记录
ID:22967504
大小:479.60 KB
页数:20页
时间:2018-11-02
《2018中考复习二次函数综合应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2018年中考复习二次函数综合应用类型一线段、周长问题1、(2016•淄博23.(9分))已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为.(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.【考点】二次函数的应用.菁优网版权所有【分析】(1)设Q(m,),F(0,),根据QO=QF列出方程即可解决问题.(
2、2)设M(t,t2),Q(m,),根据KOM=KOQ,求出t、m的关系,根据QO=QM列出方程即可解决问题.(3)设M(n,n2)(n>0),则N(n,0),F(0,),利用勾股定理求出MF即可解决问题.【解答】解:(1)∵圆心O的纵坐标为,∴设Q(m,),F(0,),∵QO=QF,∴m2+()2=m2+(﹣)2,∴a=1,∴抛物线为y=x2.(2)∵M在抛物线上,设M(t,t2),Q(m,),∵O、Q、M在同一直线上,∴KOM=KOQ,∴=,∴m=,∵QO=QM,∴m2+()2=(m﹣t)2=(﹣t
3、2)2,整理得到:﹣t2+t4+t2﹣2mt=0,∴4t4+3t2﹣1=0,∴(t2+1)(4t2﹣1)=0,∴t1=,t2=﹣,当t1=时,m1=,当t2=﹣时,m2=﹣.∴M1(,),Q1(,),M2(﹣,),Q2(﹣,).(3)设M(n,n2)(n>0),∴N(n,0),F(0,),∴MF===n2+,MN+OF=n2+,∴MF=MN+OF.【点评】本题考查二次函数的应用、三点共线的条件、勾股定理等知识,解题的关键是设参数解决问题,把问题转化为方程解决,属于中考常考题型.2、(2017年东营25
4、题12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.【答案】(1)(﹣1,0)(2)y=﹣x2+x+(3)【解析】试题分析:(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用
5、三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.∴=tan30°=,即=,解得AO=1,学@科网∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC
6、,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想类型二图形面积问题3、(2016烟台25题12分)如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点
7、F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.【考点】二次函数综合题.【分析】(1)根据平行四边形的性质和抛物线的特点确定出点D,然而用待定系数法确定出抛物线的解析式.(2)根据AD∥BC∥x轴,且AD,BC
8、间的距离为3,BC,x轴的距离也为3,F(m,6),确定出E(,3),从而求出梯形的面积.(3)先求出直线AC解析式,然后根据FM⊥x轴,表示出点P(m,﹣m+9),最后根据勾股定理求出MN=,从而确定出MN最大值和m的值.【解答】解:(1)∵过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),∴点C的横坐标为4,BC=4,∵四边形ABCD为平行四边形,∴AD=BC=4,∵A(2,6),∴D(6,6),设抛物线解析式为y=a(x
此文档下载收益归作者所有