欢迎来到天天文库
浏览记录
ID:22887428
大小:269.50 KB
页数:7页
时间:2018-11-01
《数值分析课后习题部分参考-答案~》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数值分析课后习题部分参考答案Chapter1(P10)5.求的近似值,使其相对误差不超过。解:。设有位有效数字,则。从而,。故,若,则满足要求。解之得,。。(P10)7.正方形的边长约,问测量边长时误差应多大,才能保证面积的误差不超过1。解:设边长为,则。设测量边长时的绝对误差为,由误差在数值计算的传播,这时得到的面积的绝对误差有如下估计:。按测量要求,解得,。Chapter2(P47)5.用三角分解法求下列矩阵的逆矩阵:。解:设。分别求如下线性方程组:,,。先求的LU分解(利用分解的紧凑格式),。即,,。经直接三角分解法的回代程,分别求解方程组,和,得,;和,得,;和,得,;
2、。所以,。(P47)6.分别用平方根法和改进平方根法求解方程组:解:平方根法:先求系数矩阵的Cholesky分解(利用分解的紧凑格式),,即,,其中,。经平方根法的回代程,分别求解方程组和,得,。改进平方根法:先求系数矩阵的形如的分解,其中为单位下三角矩阵,为对角矩阵。利用计算公式,得;。分别求解方程组,和,得,。(P48)12.已知方程组的解为。(1)计算系数矩阵的条件数;(2)取,分别计算残量。本题的计算结果说明了什么?解:(1)设,求得,。从而,。(2)计算得,,;,。这说明,系数矩阵的条件数很大时,残量的大小不能反映近似解精度的高低。Chapter3(P72)3.用Ja
3、cobi迭代和Gauss-Seidel迭代求解方程组取初值,迭代4次,并比较它们的计算结果。解:由方程组得,从而,Jacobi迭代格式为:,Gauss-Seidel迭代格式为:,整理得,,Jacobi迭代:Gauss-Seidel迭代:Jacobi迭代中已经是方程组的精确解,而从Gauss-Seidel迭代的计算结果,可以预见它是发散的。(P73)9.设有方程组(1)分别写出Jacobi迭代法和Gauss-Seidel迭代法的计算公式,(2)用迭代收敛的充要条件给出这两种迭代法都收敛的的取值范围。解:由方程组得,从而,Jacobi迭代格式为:,迭代矩阵为:设,求得,,故。另由J
4、acobi迭代格式,得Gauss-Seidel迭代格式为:,迭代矩阵为:设,求得,,故。另外,应保证方程组的系数矩阵非奇异,解得,。由迭代收敛的充要条件得,Jacobi迭代收敛;Gauss-Seidel迭代收敛。故,使得两种迭代法都收敛的的取值范围是相同的:。(P74)12.证明对称矩阵当时为正定矩阵,且只有当时,Jacobi迭代解才收敛。解:为正定当且仅当以下三个不等式同时成立:,解之得,。此时解方程组的Gauss-Seidel迭代收敛。另外,可得解方程组的Jacobi迭代格式的迭代矩阵为解得,。由收敛的充要条件,Jacobi迭代收敛当且仅当。Chapter5(P140)7.
5、设为个互异节点,为这组节点上的次Lagrange插值基函数,试证:(1);(2)。证:(1)对于固定的,设,则为次数不超过的多项式,且,而对于多项式函数当然也满足如上的等式条件以及次数,由Lagrange插值问题的适定性,。(2)对于固定的,,证完。
此文档下载收益归作者所有