二重积分的应用

二重积分的应用

ID:22799746

大小:197.07 KB

页数:9页

时间:2018-10-31

二重积分的应用_第1页
二重积分的应用_第2页
二重积分的应用_第3页
二重积分的应用_第4页
二重积分的应用_第5页
资源描述:

《二重积分的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、§9.3二重积分的应用定积分应用的元素法也可推广到二重积分,使用该方法需满足以下条件:1、所要计算的某个量对于闭区域具有可加性(即:当闭区域分成许多小闭区域时,所求量相应地分成许多部分量,且)。2、在内任取一个直径充分小的小闭区域时,相应的部分量可近似地表示为,其中,称为所求量的元素,并记作。(注:的选择标准为:是直径趋于零时较更高阶的无穷小量)3、所求量可表示成积分形式一、曲面的面积设曲面由方程给出,为曲面在面上的投影区域,函数在上具有连续偏导数和,现计算曲面的面积。在闭区域上任取一直径很小的闭区域(它的面

2、积也记作),在内取一点,对应着曲面上一点,曲面在点处的切平面设为。以小区域的边界为准线作母线平行于轴的柱面,该柱面在曲面上截下一小片曲面,在切平面上截下一小片平面,由于的直径很小,那一小片平面面积近似地等于那一小片曲面面积。曲面在点处的法线向量(指向朝上的那个)为它与轴正向所成夹角的方向余弦为而所以这就是曲面的面积元素,故故【例1】求球面含在柱面()内部的面积。解:所求曲面在面的投影区域曲面方程应取为,则,曲面在面上的投影区域为据曲面的对称性,有若曲面的方程为或,可分别将曲面投影到面或面,设所得到的投影区域分

3、别为或,类似地有或二、平面薄片的重心1、平面上的质点系的重心其质点系的重心坐标为,2、平面薄片的重心设有一平面薄片,占有面上的闭区域,在点处的面密度为,假定在上连续,如何确定该薄片的重心坐标。这就是力矩元素,于是又平面薄片的总质量从而,薄片的重心坐标为特别地,如果薄片是均匀的,即面密度为常量,则十分显然,这时薄片的重心完全由闭区域的形状所决定,因此,习惯上将均匀薄片的重心称之为该平面薄片所占平面图形的形心。【例2】设薄片所占的闭区域为介于两个圆,()之间的闭区域,且面密度均匀,求此均匀薄片的重心(形心)。解:

4、由的对称性可知:而故三、平面薄片的转动惯量1、平面质点系对坐标轴的转动惯量设平面上有个质点,它们分别位于点处,质量分别为。设质点系对于轴以及对于轴的转动惯量依次为2、平面薄片对于坐标轴的转动惯量设有一薄片,占有面上的闭区域,在点处的面密度为,假定在上连续。现要求该薄片对于轴、轴的转动惯量,。与平面薄片对坐标轴的力矩相类似,转动惯量元素为【例3】求由抛物线及直线所围成的均匀薄片(面密度为常数)对于直线的转动惯量。解:转动惯量元素为四、平面薄片对质点的引力设有一平面薄片,占有面上的闭区域,在点处的面密度为,假定在

5、上连续,现计算该薄片对位于轴上点处的单位质量质点的引力。于是,薄片对质点的引力在三个坐标轴上的分力的力元素为故

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。