反比例函数(面积、动点)专项训练二

反比例函数(面积、动点)专项训练二

ID:22789682

大小:430.00 KB

页数:10页

时间:2018-10-31

反比例函数(面积、动点)专项训练二_第1页
反比例函数(面积、动点)专项训练二_第2页
反比例函数(面积、动点)专项训练二_第3页
反比例函数(面积、动点)专项训练二_第4页
反比例函数(面积、动点)专项训练二_第5页
资源描述:

《反比例函数(面积、动点)专项训练二》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、九年级数学上期专项训练题二《反比例函数》【热身训练】要求:快速完成!并写出方法小结或感悟!1.(2013•乌鲁木齐)如图,反比例函数y=(x>0)的图象与矩形OABC的边长AB、BC分别交于点E、F且AE=BE,则△OEF的面积的值为  .考点:反比例函数系数k的几何意义.3797161分析:连接OB.首先根据反比例函数的比例系数k的几何意义,得出S△AOE=S△COF=1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F是BC的中点,则S△BEF=S△OCF=0.75,最后由S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF

2、,得出结果.解答:解:连接OB.∵E、F是反比例函数y=(x>0)的图象上的点,EA⊥x轴于A,FC⊥y轴于C,∴S△AOE=S△COF=×3=.∵AE=BE,∴S△BOE=S△AOE=,S△BOC=S△AOB=3,∴S△BOF=S△BOC﹣S△COF=3﹣=,∴F是BC的中点.∴S△OEF=S矩形AOCB﹣S△AOE﹣S△COF﹣S△BEF=6﹣﹣﹣×=.故答案是:.点评:第10页九年级数学上期专项训练题二《反比例函数》本题主要考查反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=

3、k

4、.得出点F为BC的中点是解决

5、本题的关键.2.如图,已知直线与双曲线交于、两点,点的坐标为,为双曲线上一点,且在第一象限内,若△的面积为6,则点的坐标为(2,4).[来源:学&科&网Z&X&X&K]3.(2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)考点:反比例函数综合题.专题:综合题.分析:(1)过点A作AD⊥x轴于

6、D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式;(2)求出反比例函数和一次函数的另外一个交点即可;(3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可.解答:解:(1)过点A作AD⊥x轴于D,∵C的坐标为(﹣2,0),A的坐标为(n,6),∴AD=6,CD=n+2,∵tan∠ACO=2,∴==2,解得:n=1,第10页九年级数学上期专项训练题二《反比例函数》故A(1,6),∴m=1×6=6,∴反比例函数表达式为:y=,又∵点A、C在直线y=kx+b上,∴,解得:,∴一次函数

7、的表达式为:y=2x+4;(2)由得:=2x+4,解得:x=1或x=﹣3,∵A(1,6),∴B(﹣3,﹣2);(3)分两种情况:①当AE⊥x轴时,即点E与点D重合,此时E1(1,0);②当EA⊥AC时,此时△ADE∽△CDA,则=,DE==12,又∵D的坐标为(1,0),∴E2(13,0).第10页九年级数学上期专项训练题二《反比例函数》点评:本题考查了反比例函数的综合题,涉及了点的坐标的求法以及待定系数法求函数解析式的知识,主要考查学生的计算能力和观察图形的能力.【例题精解】4.(2013•义乌市)如图1所示,已知y=(x>0)图象上一点P,PA⊥x轴于点A(a,0),点B坐标

8、为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q连接AQ,取AQ的中点为C.(1)如图2,连接BP,求△PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.考点:反比例函数综合题第10页九年级数学上期专项训练题二《反比例函数》分析:(1)根据同底等高的两个三角形的面积相等即可求出△PAB的面积;(2)首先求出∠BQC=60°,∠BAQ=30

9、°,然后证明△ABQ≌△ANQ,进而求出∠BAO=30°,由S四边形BQNC=2求出OA=3,于是P点坐标求出;(3)分两类进行讨论,当点Q在线段BD上,根据题干条件求出AQ的长,进而求出四边形的周长,当点Q在线段BD的延长线上,依然根据题干条件求出AQ的长,再进一步求出四边形的周长.解答:解:(1)S△PAB=S△PAO=xy=×6=3;(2)如图1,∵四边形BQNC是菱形,∴BQ=BC=NQ,∠BQC=∠NQC,∵AB⊥BQ,C是AQ的中点,∴BC=CQ=AQ,∴∠BQC=6

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。