等角螺线及其它——赵文敏

等角螺线及其它——赵文敏

ID:22786569

大小:358.50 KB

页数:15页

时间:2018-10-31

等角螺线及其它——赵文敏_第1页
等角螺线及其它——赵文敏_第2页
等角螺线及其它——赵文敏_第3页
等角螺线及其它——赵文敏_第4页
等角螺线及其它——赵文敏_第5页
资源描述:

《等角螺线及其它——赵文敏》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、中数网——http://www.cnmaths.com/等角螺线及其它赵文敏§何谓等角螺线§等角螺线的方程式§趣史一则§等角螺线上的相似性质§黄金分割与等角螺线§等角螺线的弧长§等角螺线的再生性质§其它螺线举例几何学是一门源远流长的数学分支,在十七世纪以前,几何学一词甚至可说是数学的同义词,它以往的风光可想而知。曾几何时,因为某些内在与外在的因素,几何学的地位似乎已逐渐没落;在中小学的数学教材里,几何题材一次又一次地被删除。这种现象使我们感到忧心,因为自然环境中隐藏着许多几何原理,不了解这些几何知识,不就表

2、示我们对所生存的空间已经愈来愈不了解了吗?笔者从事数学教育工作多年,又是现行高中数学教科书的编者之一,对当前高中数学教材中几何题材的过度贫乏,实在感到忧心忡忡。在无力对教科书作大幅度修改的情况下,只好在正式教科书之外从事一些修缮工作。基于上述想法,笔者希望能以一系列的文章来介绍一些几何题材。在内容方面,笔者首先选上曲线。因为曲线的讨论不仅是几何学中最有趣的题材之一,而且许多曲线都会在自然现象中出现,它们的性质也往往能提供重要的应用。例如:天文望远镜的设计,不就是根据拋物线的反射性质吗?本文介绍等角螺线。何谓

3、等角螺线在一片空旷的草地上,甲、乙、丙、丁、四只狗分别站立在一个正方形的四个顶点A、B、C、D上。狗主人要甲狗紧盯着乙狗、乙狗紧盯着丙狗、丙狗紧盯着丁狗、丁狗紧盯着甲狗。一声令下,四只狗以相同的速度同时冲向目标。假定每只狗在每个时刻都是正面朝向它的目标,那么,这四只狗所跑过的路径是什么形式呢?第15页共15页中数网——http://www.cnmaths.com/假设四只狗在某一时刻的位置分别为A1、B1、C1、D1(见图一),则根据四只狗的行动一致所产生的对称性,可知也是正方形,而且它的中心也就是正方形的

4、中心O。更进一步地,由于在A1点的甲狗系冲向在B1点的乙狗,所以,甲狗在此一时刻的速度方向在向量上。或者说,甲狗所跑的路径在A1点的切线与直线OA1形成45°的夹角。同理,图一乙狗所跑的路径在B1点的切线与直线OB1形成45°的夹角等等。一般而言,若一曲线在每个点P的切向量都与某定点O至此点P所成的向量夹成一定角,且定角不是直角,则此曲线称为一等角螺线(equiangularspiral),O点称为它的极点(pole)。前面所提的四狗追逐问题中,每只狗所经过的路线都是一等角螺线的一部分,此等角螺线中的定角是

5、(或,因为切向量可选成相反方向),而其极点是正方形的中心O。等角螺线的方程式第15页共15页中数网——http://www.cnmaths.com/在坐标平面上,若极坐标方程式表示一等角螺线(),其极点是原点O,定角为α(),则因在点的切向量为所以,可得即由此可得下述结果:换言之,此等角螺线的极坐标方程式为在前面所提的四狗追逐问题中,若中心O是极点而点A的极坐标为,则甲、乙、丙、丁四只狗所跑的路径分别在下述四等角螺线上:,,,前面所提的,就是等角螺线的极坐标方程式。由于在导出此方程式的过程中曾经引用了自然对

6、数,所以,等角螺线也称为对数螺线(logarithmicspiral)。第15页共15页中数网——http://www.cnmaths.com/趣史一则等角螺线的性质,笛卡儿(R.Descartes,1596~1650)在1638年就已经考虑过,但没有获得特殊结果。托里拆利(E.Torricelli,1608~1647年)却在1645年发现有关等角螺线弧长的一项性质,这项性质在下文中将会介绍。对于等角螺线的探讨,以伯努利(J.Bernoulli,1654~1705年)的成果最为丰硕。他发现将等角螺线作某些变

7、换时,所得的曲线仍是全等的等角螺线。这些变换包括:求等角螺线的垂足曲线(pedalcurve);求等角螺线的渐屈线(evolute);求等角螺线反演曲线(inversivecurve);求等角螺线的焦线(causticcurve);将等角螺线以其极点为中心作伸缩变换(dilation),由于这些变换都可以使等角螺线再生,这个现象使伯努利大为欣慰,所以,临殁遗言要将等角螺线的这些性质刻在他墓碑上,同时题上一句话:「Eademmutataresurgo」(虽然某些状况改变了,我却保持不变)。这是继阿基米德(纪元

8、前三世纪)之后,另一位在墓碑上表现其成果的数学家。等角螺线上的相似性质根据等角螺线的方程式,可以看出:对每个θ值,都有一个对应的r值;而且不同的θ值所对应的r值也不同(因为)。这种现象表示:从等角螺线上某个点出发,随着θ值的无限制增大与无限制减小,此曲线会环绕它的极点形成无数多圈,一面是愈绕愈远,一面是愈绕愈聚集在极点附近。若,则当时,曲线聚集在极点附近。若,则当时,曲线愈绕越远。图二是等角螺线的一部分。第15页

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。