欢迎来到天天文库
浏览记录
ID:22651762
大小:66.00 KB
页数:4页
时间:2018-10-30
《三角函数与向量综合题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、题型一 三角函数平移与向量平移的综合三角函数与平面向量中都涉及到平移问题,虽然平移在两个知识系统中讲法不尽相同,但它们实质是一样的,它们都统一于同一坐标系的变化前后的两个图象中.解答平移问题主要注意两个方面的确定:(1)平移的方向;(2)平移的单位.这两个方面就是体现为在平移过程中对应的向量坐标.【例1】 把函数y=sin2x的图象按向量=(-,-3)平移后,得到函数y=Asin(ωx+j)(A>0,ω>0,
2、j
3、=)的图象,则j和B的值依次为()A.,-3B.,3C.,-3D.-,3【分析】 根据向量的坐标确定平行公式为,再代入已知解析式可得.还可以由向量的坐标得图象的
4、两个平移过程,由此确定平移后的函数解析式,经对照即可作出选择.【解析1】 由平移向量知向量平移公式,即,代入y=sin2x得y¢+3=sin2(x¢+),即到y=sin(2x+)-3,由此知j=,B=-3,故选C.【解析2】 由向量=(-,-3),知图象平移的两个过程,即将原函数的图象整体向左平移个单位,再向下平移3个单位,由此可得函数的图象为y=sin2(x+)-3,即y=sin(2x+)-3,由此知j=,B=-3,故选C.【点评】 此类题型将三角函数平移与向量平移有机地结合在一起,主要考查分析问题、解决问题的综合应用能力,同时考查方程的思想及转化的思想.本题解答的关键
5、,也是易出错的地方是确定平移的方向及平移的大小.题型二 三角函数与平面向量平行(共线)的综合此题型的解答一般是从向量平行(共线)条件入手,将向量问题转化为三角问题,然后再利用三角函数的相关知识再对三角式进行化简,或结合三角函数的图象与民性质进行求解.此类试题综合性相对较强,有利于考查学生的基础掌握情况,因此在高考中常有考查.【例2】 已知A、B、C为三个锐角,且A+B+C=π.若向量=(2-2sinA,cosA+sinA)与向量=(cosA-sinA,1+sinA)是共线向量.(Ⅰ)求角A;(Ⅱ)求函数y=2sin2B+cos的最大值.【分析】 首先利用向量共线的充要条件
6、建立三角函数等式,由于可求得A角的正弦值,再根据角的范围即可解决第(Ⅰ)小题;而第(Ⅱ)小题根据第(Ⅰ)小题的结果及A、B、C三个角的关系,结合三角民恒等变换公式将函数转化为关于角B的表达式,再根据B的范围求最值.【解】 (Ⅰ)∵、共线,∴(2-2sinA)(1+sinA)=(cosA+sinA)(cosA-sinA),则sin2A=,又A为锐角,所以sinA=,则A=.(Ⅱ)y=2sin2B+cos=2sin2B+cos=2sin2B+cos(-2B)=1-cos2B+cos2B+sin2B=sin2B-cos2B+1=sin(2B-)+1.∵B∈(0,),∴2B-∈(
7、-,),∴2B-=,解得B=,ymax=2.【点评】 本题主要考查向量共线(平行)的充要条件、三角恒等变换公式及三角函数的有界性.本题解答有两个关键:(1)利用向量共线的充要条件将向量问题转化为三角函数问题;(2)根据条件确定B角的范围.一般地,由于在三角函数中角是自变量,因此解决三角函数问题确定角的范围就显得至关重要了.题型三 三角函数与平面向量垂直的综合此题型在高考中是一个热点问题,解答时与题型二的解法差不多,也是首先利用向量垂直的充要条件将向量问题转化为三角问题,再利用三角函数的相关知识进行求解.此类题型解答主要体现函数与方程的思想、转化的思想等.【例3】 已知向量
8、=(3sinα,cosα),=(2sinα,5sinα-4cosα),α∈(,2π),且⊥.(Ⅰ)求tanα的值;(Ⅱ)求cos(+)的值.【分析】 第(Ⅰ)小题从向量垂直条件入手,建立关于α的三角方程,再利用同角三角函数的基本关系可求得tanα的值;第(Ⅱ)小题根据所求得的tanα的结果,利用二倍角公式求得tan的值,再利用两角和与差的三角公式求得最后的结果.【解】 (Ⅰ)∵⊥,∴·=0.而=(3sinα,cosα),=(2sinα,5sinα-4cosα),故·=6sin2α+5sinαcosα-4cos2α=0.由于cosα≠0,∴6tan2α+5tanα-4=0.
9、解之,得tanα=-,或tanα=.∵α∈(,2π),tanα<0,故tanα=(舍去).∴tanα=-.(Ⅱ)∵α∈(,2π),∴∈(,π).由tanα=-,求得tan=-,tan=2(舍去).∴sin=,cos=-,∴cos(+)=coscos-sinsin=-×-×=-【点评】 本题主要考查向量垂直的充要条件、同角三角函数的基本关系、二倍角公式及两角和与差的三角函数.同时本题两个小题的解答都涉及到角的范围的确定,再一次说明了在解答三角函数问题中确定角的范围的重要性.同时还可以看到第(Ⅰ)小题的解答中用到“弦化切”的思想方
此文档下载收益归作者所有