欢迎来到天天文库
浏览记录
ID:22626970
大小:1.45 MB
页数:14页
时间:2018-10-30
《圆锥曲线知识点+例题+练习含答案解析(整理)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、WORD文档下载可编辑圆锥曲线一、椭圆:(1)椭圆的定义:平面内与两个定点的距离的和等于常数(大于)的点的轨迹。其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。注意:表示椭圆;表示线段;没有轨迹;(2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程图形xOF1F2PyA2A1B1B2A1xOF1F2PyA2B2B1顶点对称轴轴,轴;短轴为,长轴为焦点焦距离心率(离心率越大,椭圆越扁)通径(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常用结论:(1)椭圆的两个焦点为,过的直线交椭圆于两点,则的周长=
2、(2)设椭圆左、右两个焦点为,过且垂直于对称轴的直线交椭圆于两点,则的坐标分别是二、双曲线:(1)双曲线的定义:平面内与两个定点的距离的差的绝对值等于常数(小于专业资料整理分享WORD文档下载可编辑)的点的轨迹。其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。注意:与()表示双曲线的一支。表示两条射线;没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程图形xOF1F2PyA2A1yxOF1PB2B1F2顶点对称轴轴,轴;虚轴为,实轴为焦点焦距离心率(离心率越大,开口越大)渐近线通径(3
3、)双曲线的渐近线:①求双曲线的渐近线,可令其右边的1为0,即得,因式分解得到。②与双曲线共渐近线的双曲线系方程是;(4)等轴双曲线为,其离心率为(4)常用结论:(1)双曲线的两个焦点为,过专业资料整理分享WORD文档下载可编辑的直线交双曲线的同一支于两点,则的周长=(2)设双曲线左、右两个焦点为,过且垂直于对称轴的直线交双曲线于两点,则的坐标分别是三、抛物线:(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。其中:定点为抛物线的焦点,定直线叫做准线。(2)抛物线的标准方程、图象及几何性质:焦点在轴上,开口向右焦点在轴
4、上,开口向左焦点在轴上,开口向上焦点在轴上,开口向下标准方程图形xOFPyOFPyxOFPyxOFPyx顶点对称轴轴轴焦点离心率准线通径焦半径焦点弦焦准距四、弦长公式:其中,分别是联立直线方程和圆锥曲线方程,消去y后所得关于x的一元二次方程专业资料整理分享WORD文档下载可编辑的判别式和的系数求弦长步骤:(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x的一元二次方程设,,由韦达定理求出,;(3)代入弦长公式计算。法(二)若是联立两方程,消去x,得关于y的一元二次方程则相应的弦长公式是:注意(1)上面用到了关系式和注意(2
5、)求与弦长有关的三角形面积,往往先求弦长,再求这边上的高(点到直线的距离),但若三角形被过顶点的一条线段分成两个三角形,且线段的长度为定值,求面积一般用分割法五、弦的中点坐标的求法法(一):(1)求出或设出直线与圆锥曲线方程;(2)联立两方程,消去y,得关于x的一元二次方程设,,由韦达定理求出;(3)设中点,由中点坐标公式得;再把代入直线方程求出。法(二):用点差法,设,,中点,由点在曲线上,线段的中点坐标公式,过A、B两点斜率公式,列出5个方程,通过相减,代入等变形,求出。六、求离心率的常用方法:法一,分别求出a,c,再代入公式法二、建立a
6、,b,c满足的关系,消去b,再化为关于e的方程,最后解方程求e(求e时,要注意椭圆离心率取值范围是0﹤e﹤1,而双曲线离心率取值范围是e﹥1)例1:设点P是圆上的任一点,定点D的坐标为(8,0),若点M满足.当点P在圆上运动时,求点M的轨迹方程.专业资料整理分享WORD文档下载可编辑解设点M的坐标为,点P的坐标为,由,得,即,.因为点P在圆上,所以.即,即,这就是动点M的轨迹方程.例2:已知椭圆的两个焦点为(-2,0),(2,0)且过点,求椭圆的标准方程解法1因为椭圆的焦点在轴上,所以设它的标准方程为,由椭圆的定义可知:又所以所求的标准方程为
7、解法2,所以可设所求的方程为,将点代人解得:所以所求的标准方程为例3.例4.高二圆锥曲线练习题1专业资料整理分享WORD文档下载可编辑1、F1,F2是定点,且
8、F1F2
9、=6,动点M满足
10、MF1
11、+
12、MF2
13、=6,则M点的轨迹方程是()(A)椭圆(B)直线(C)圆(D)线段2、已知的周长是16,,B,则动点的轨迹方程是()(A)(B)(C)(D)3、已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()A.B.C.D.4、设椭圆的离心率为,焦点在轴上且长轴长为26.若曲线上的点到椭圆的两个焦点的距离的差的绝对值等于8,则曲线的标准方程为()A
14、.B.C.D.5、设双曲线的渐近线方程为,则的值为().(A)4(B)3(C)2(D)16、双曲线的实轴长是()(A)2(B)2(C)4(D)47、双曲线=1的焦点
此文档下载收益归作者所有