圆锥曲线知识点+例题+练习含答案解析.docx

圆锥曲线知识点+例题+练习含答案解析.docx

ID:53859307

大小:641.58 KB

页数:16页

时间:2020-04-09

圆锥曲线知识点+例题+练习含答案解析.docx_第1页
圆锥曲线知识点+例题+练习含答案解析.docx_第2页
圆锥曲线知识点+例题+练习含答案解析.docx_第3页
圆锥曲线知识点+例题+练习含答案解析.docx_第4页
圆锥曲线知识点+例题+练习含答案解析.docx_第5页
资源描述:

《圆锥曲线知识点+例题+练习含答案解析.docx》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、-----圆锥曲线一、椭圆:(1)椭圆的定义:平面内与两个定点F1,F2的距离的和等于常数(大于

2、F1F2

3、)的点的轨迹。其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。注意:2a

4、F1F2

5、表示椭圆;2a

6、F1F2

7、表示线段F1F2;2a

8、F1F2

9、没有轨迹;(2)椭圆的标准方程、图象及几何性质:中心在原点,焦点在x轴上中心在原点,焦点在y轴上-----------标准方程图形x2y21(ab0)y2x21(ab0)a2b2a2b2yB2yPF2B2A1A2xPA1xOOA2F1F1F2B1B1--

10、---------顶点对称轴焦点焦距离心率通径2b2aA1(a,0),A2(a,0)A1(b,0),A2(b,0)B1(0,b),B2(0,b)B1(0,a),B2(0,a)x轴,y轴;短轴为2b,长轴为2aF1(c,0),F2(c,0)F1(0,c),F2(0,c)

11、F1F2

12、2c(c0)c2a2b2ec(0e1)(离心率越大,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)-----------3.常用结论:(1)椭圆x2y21(ab0)的两个焦点为F1,F2,过F1的直线交椭圆于A,B两

13、a2b2点,则ABF2的周长=(2)设椭圆x2y21(ab0)左、右两个焦点为F1,F2,过F1且垂直于对称轴的直线a2b2----------------------交椭圆于P,Q两点,则P,Q的坐标分别是

14、PQ

15、-----------二、双曲线:(1)双曲线的定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于

16、F1F2

17、)的点的轨迹。其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。注意:

18、PF1

19、

20、PF2

21、2a与

22、PF2

23、

24、PF1

25、2a(2a

26、F1F2

27、)表示双曲线的一支。2a

28、F1

29、F2

30、表示两条射线;2a

31、F1F2

32、没有轨迹;(2)双曲线的标准方程、图象及几何性质:中心在原点,焦点在x轴上中心在原点,焦点在y轴上标准x2y2y2x21(a0,b0)1(a0,b0)a2b2a2b2方程PyF2yB2图形PxxOF1A1OA2F2B1F1-----------顶点对称轴焦点焦距离心率渐近线通径(3)双曲线的渐近线:A1(a,0),A2(a,0)B1(0,a),B2(0,a)x轴,y轴;虚轴为2b,实轴为2aF1(c,0),F2(c,0)F1(0,c),F2(0,c)

33、F1F2

34、2c(c

35、0)c2a2b2ec(e1)(离心率越大,开口越大)aybxyaxab2b2a-----------①求双曲线x2y21的渐近线,可令其右边的1为0,即得x2y20,因式分解得到xy0。a2b2a2b2ab-----------②与双曲线x2y21共渐近线的双曲线系方程是x2y2;a2b2a2b2(4)等轴双曲线为x2y2t2,其离心率为2(4)常用结论:(1)双曲线x2y2的两个焦点为F,F,过F1(a0,b0)的直线交双曲线a2b2121的同一支于A,B两点,则ABF2的周长=(2)设双曲线x2y21(

36、a0,b0)左、右两个焦点为F,F,过F且垂直于对称轴的a2b2121直线交双曲线于P,Q两点,则P,Q的坐标分别是

37、PQ

38、三、抛物线:(1)抛物线的定义:平面内与一个定点的距离和一条定直线的距离相等的点的轨迹。其中:定点为抛物线的焦点,定直线叫做准线。(2)抛物线的标准方程、图象及几何性质:p0-----------焦点在x轴上,焦点在x轴上,焦点在y轴上,焦点在y轴上,-----------开口向右开口向左开口向上开口向下-----------标准y22pxy22pxx22pyx22

39、py方程lyPPyylyxlxO图形PFxxOFFOPFOl顶点O(0,0)对称轴x轴y轴焦点F(p,0)F(p,0)F(0,p)F(0,p)2222离心率e1准线xpxpypyp2222-----------通径焦半径焦点弦2pp

40、PF

41、

42、y0p

43、PF

44、

45、x0

46、

47、22-----------焦准距p四、弦长公式:

48、AB

49、1k2

50、x1x2

51、1k2(x1x2)24x1x21k2

52、A

53、其中,A,分别是联立直线方程和圆锥曲线方程,消去y后所得关于x的一元二次方程的判别式和x2的系数求弦长步骤:(1)求出或设出直线

54、与圆锥曲线方程;(2)联立两方程,消去y,得关于x的一元二次方程Ax2BxC0,设A(x1,y1),B(x2,y2),由韦达定理求出1x2B,xAC;(3)代入弦长公式计算。x1x2A法(二)若是联立两方程,消去x,得关于y的一元二次方程Ay2ByC0,则相应的弦长公式是:

55、AB

56、1(1)2

57、y1y2

58、1(1)2(y1y2)24y1y21(1)2kkk

59、A

60、注意(1)上面用到了关系式

61、x1x2

62、(x1x2)24x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。