深圳市民用燃气市场需求预测

深圳市民用燃气市场需求预测

ID:22339032

大小:62.00 KB

页数:9页

时间:2018-10-28

深圳市民用燃气市场需求预测_第1页
深圳市民用燃气市场需求预测_第2页
深圳市民用燃气市场需求预测_第3页
深圳市民用燃气市场需求预测_第4页
深圳市民用燃气市场需求预测_第5页
资源描述:

《深圳市民用燃气市场需求预测》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、深圳市民用燃气市场需求预测摘要:民用燃气市场需求是随机事件,其影响因素复杂、相互制约。本文以大量的实际进行数据作为依据,运中数理统计中时间序列法和线性回归的方式建立适用的数学模型,从而预测未来的发展趋势,并将实际值和预计质量相比较,从而证明模型的适用性。城市燃气一般用于居民生活用气、公福建筑用气和工业企业生产用气等。上述各用户的年用气量是进行成本分析的重要依据。然而,居民生活用气量的统计、计算不仅特别困难,而且需求量变化规律也不好掌握。究其原因,居民生活用气实质上是随机事件,其影响因素复杂、相互制

2、约,以致很难归纳成理论系统导出,一般情况下需统计大量的实际运行数据作为依据,以数学方法处理统计数据并建立适用的数学模型,从而预测未来的发展趋势。l居民用户用气量影响的因素分析居民生活用气量的大小与许多因素有关,其中有些因素会造成用气量的自然增长,即正影响;有些因素会造成用气量的减少,即负影响。经调研分析,它的影响因素主要有以下5个方面:(1)户内燃气设备的类型通常燃具额定功率(MJ/H)越大,居民年用气量越多,而且用户设置燃具的额定功率一般都比该产所需要的功率要大;但当设置燃气用具额定总功率达到一

3、定程度时,居民年用气量将不再随这一因素增长。(2)能源多样化其它能源的使用对居民年用气量有一定影响,如电饭堡、微波炉和电热水瓶等设备使用比例增加时,燃气用量必然减少。(3)户内人口数每户人口数可认为是使用同一燃具的人口数。户均人口较多时人均年用气量略偏低,反之亦反之。由于社会综合因素的作用,深圳市居民家庭向小型化发展,随之,户内人均年用气量将略有增加。根据深圳市城市调查大队提供的数据,每居民户人口为3.5人。(4)社区内公共福利设施完备时,居民通常会选择省时、省力和较经济的用餐与消费主、副食品的途

4、径。随着市场经济的发展,服务性设施的完善,家庭用热日趋社会化,户内节能效益不断提高,这无疑对居民年用气量指标产生负影响。(5)社会经济发展城市燃气作为城市公用事业,与整个城市的社会经济发展有密切关系诸如:GDP、常住人口、居民生活水平等,根据《深圳市年鉴》有关资料从一九八六年到一九九九年有关数据如表1所示。综上所述,无论如何权衡诸多影响,也难量化和逻辑导出年用气量的数学计算公式,唯有积累和统计实际的运行资料,分析、整理可靠的数据,才能比较正确地、近似地预测居民年用气量。从表1所示,深圳市居民年用气

5、平稳上升的趋势,根据我国目前民用能耗水平远低于发达国家的能耗水平这一基本情况测算,在中近期(约10年左右)内,此趋势不应出现反常姿态。2居民用户用气预测尽管居民用户用气量的确定与诸多因素有关,但却并非简单的因果关系。因此,在作分析预测时不宜选用因果回归分析法,而以时间序列分析法比较恰当。时间序列分析法是依据预测对象过去的统计数据(Yt),找出其随时间(t)变化的规律,建立时序模型,以推断预测对象未来数值的一种预测方法。居民用户用气量是在时间上展开的,随着时间的推移可以得到一系列依赖于时间(t)而变

6、化的数据:Yl、Y2……Yt,并可在时间坐标上得到Yt=f(t)时序曲线图,利用方程Yt=f(t),依据Y1、Y2……Yt对(t+1)、(t+2)、……(t+m)进行预测时可选用的方法很多,由于居民用户用气量往往受季节性、周期性和一些不规则因素的影响,经分析比较,在这种情况下,就可以用时间序列分解和分离这些因素。2.1概述假定时间序列的各因子间是乘法关系即Q=T·S·C·I(1)式中:Q—居民用气量预期值;T—长期趋势值;S—季节性因子;C—周期性因子;I—不规则因子。长期趋势一般可以在居民用气量

7、数据消除季节性因素后,以线性函数形式,用回归分析法来估计。季节性因子反映在年内数据的重复的、有规则的变动,而且以后每年的情况都类似。一般它们或者属季度的变化,或者随月度的变化。周期性因子反映数据围绕长期趋势线的上、下波动。不规则因子是随机事件引起的,随着时间的推移,它不再重复(至少不是有规则的)。例如,战争、特别恶劣的天气等等。这些事件由于具有随机性质,所以无法正式列入模型。深圳市居民用气量见下表2。为便于分析用气量随时间的变化,将表2重新整理为按季节排列的用气情况,如表3中所示。表3中,共有24

8、个季度的用气量[Q]数值,MA栏是连续4个时期的用气量的移动平均值。该栏第3行的移动平均数计算如下:MA3=(Q1+Q2+Q3+Q4)/4(2)下一个移动平均数(MA4)算法相同,只是所用的4个季度都向前移动,即去掉第1季度,加上第5季度:MA4=(Q2+Q3+Q4+Q5)/4(3)因此,4期移动平均值的计算公式可一般地表示为MAt=(Qt-2+Qt-1+Qt+Qt+1)/4(4)说明,表3中第1、2期和第12期缺移动平均值,这是因为第1、2期之前和第12期以后用于这一计算的数据不

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。