欢迎来到天天文库
浏览记录
ID:22297815
大小:264.58 KB
页数:18页
时间:2018-10-28
《外文翻译动态自适应粒子群算法和它的应用程序来优化pid参数》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2013届电子信息工程学院夕卜文文献及译稿夕卜文文献题目:DynamicalAdaptiveParticleSwarmAlgorithmandItsApplicationtoOptimizationofPIDParameters姓名:学号:专业班级:自动化B095学院(部):电子信息工程学院指导教师:2013年5月30日AmericanJournalofOperationsResearch,2012,2,448-451doi:10.4236/ajor.2012.23053PublishedOnlineSeptember2012DynamicalAdaptivePartic
2、leSwarmAlgorithmandItsApplicationtoOptimizationofPIDParametersJiminLi,GuolinYuResearchInstituteofInformationandSystemComputationScience,TheNorthUniversityforNationalities,Yinchuan,ChinaEmail:guolin_yu@126.comReceivedJune15,2012;revisedJuly18,2012;acceptedAugust5,2012ABSTRACTBasedonanewada
3、ptiveParticleSwarmOptimizationalgorithmwithdynamicallychanginginertiaweight(DAPSO),itisusedtooptimizeparametersinPIDcontroller.ComparedtoconventionalPIDmethods,thesimulationshowsthatthisnewmethodmakestheoptimizationperfectlyandconvergencequickly.Keywords:ParticleSwarmOptimization;Dynamica
4、lAdaptive;PIDAutomaticRegulationSystem1.IntroductionParticleSwarmOptimizationisakindofsimulationgroup(Swarm)intelligentbehavioroftheOptimizationofthealgorithmproposedbyKennedyandEberhart[1]andothers.Itsthoughtsourcefrombirdpreyonbehaveiorresearch.ContrastingPSOwiththegeneticalgorithmandth
5、eantcolonyalgorithm,thePSOmethodissimpleandeasytoimplement,anditcanbeadjustedlessparameterscharacteristics.So,itiswidelyappliedinthestructuraldesign[2J,electromagneticfield[3]taskscheduling[4]engineeringoptimizationproblems.Intheparticleswarmalgorithm,theadjustedparame-tersarethemostimpor
6、tantpartintheinertiaweights.Inordertofindainertiaofweightsselectionmethodwhichcangetthebestbalancebetweentheglobalsearchandlocalsearch,theresearchershaveputforwardtothelin-eardecreaseweights(LDIW)strategy[5],fuzzyinertiaweights(FIW)strategy[6],andrandominertiaweights(RIW)strategy[7],andso
7、on.Inthebasicthoughtofdiminishinginertiavalueguidance,thispaperintroducesanewadaptiveself-adaptinginertia,whichisbasedonexpectationsofsurvivalrate.Whentheexpectedsurvivalrategetssmaller,itshowsthattheoptimalparticledistancetopositionisfurther,atthistime,weshouldmake
此文档下载收益归作者所有