浅谈高中数学的概念教学

浅谈高中数学的概念教学

ID:22224933

大小:64.28 KB

页数:8页

时间:2018-10-27

浅谈高中数学的概念教学_第1页
浅谈高中数学的概念教学_第2页
浅谈高中数学的概念教学_第3页
浅谈高中数学的概念教学_第4页
浅谈高中数学的概念教学_第5页
资源描述:

《浅谈高中数学的概念教学》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、浅谈高中数学的概念教学【摘要】概念是思维的基本形式,它是数学知识的集中表现。概念是进行判断、推理和建立定理的基础。在进行概念教学时要重视概念产生的本源,明确其定义的由来,抓住定义中的关键字词,利用类比的方法来加深对概念的理解。培养学生分析问题,解决问题的能力。【关键词】概念;定义;关键字词;类比概念是思维的基本形式,正确理解和掌握数学概念,可以帮助我们掌握知识,发展技能,培养思维。在高中数学的学习过程中,会遇到很多数学概念,它们是数学学习的基础。对数学概念有了清晰、深刻的理解,对于后续的定理、性质等的学习是大有裨益

2、的。而在实际的教学过程中,有不少教师却抱有急功近利的思想,在教学时直接将概念,定义抛给学生,接着就开始要求学生大量做题,短期内学生做题目的正确率还可以。但是长此以往,学生对概念的理解显然不到位,容易出现概念不清,概念混淆等各种错误。同时,也很不利于学生数学思维的发展,会阻碍学生能力的提升。可以这样说,概念清晰了,思路才会清。那么应该如何来开展概念教学呢?笔者认为应该做到以下几点。一、知晓概念的来龙去脉,明确其定义的合理性和科学性高中数学中的不少概念,都有其深厚的数学背景。他们是由一代一代的数学家经过艰苦卓绝的努力创

3、建并不断加以完善得到的。在讲解这些数学概念前,应该首先将概念创立的背景介绍给学生。这样不仅可以提高学生的学习兴趣,还可以丰富他们数学史的知识,以提高学生的数学修养。如在讲解虚数概念的时候,可以首先向学生介绍虚数的创立过程,它是经过了长期而曲折的过程才渐渐被人们所接受。在了解了虚数的由来后,接着再来学习虚数的概念,如此,可以使学生在学习数学史的同时提高学生学习数学的兴趣。定义是准确表达数学概念的方式。在学习概念时,我们还要向学生明确其定义的合理性和科学性。对概念的定义不仅要知其然,还要知其所以然。如在学习异面直线所成

4、角的定义时,应该先回顾异面直线的定义,即空间中不同在任何一个平面内的两条直线叫做异面直线。接着提问学生异面直线的位置关系该用什么来刻画呢?通过观察自然想到用角度来衡量,但异面直线并不在一起,没有现成的角度。此时引导学生作平行线,转化成相交直线来看角度,并发现两条相交直线产生四个角,且对顶角两两相等,那么只要考察两个角就够了。而这两个角中应选择其中较小的角,即相交直线所成的锐角或直角来作为两异面直线所成的角会比较方便。最后,师生对定义中在空间任取一点的科学性进行探宄,发现其理论根据是等角定理。经过这一番分析,学生便会

5、觉得此定义合情合理,并不由自主地对数学定义的严密性和科学性产生由衷的钦佩,进而激发出自己学好数学的信心。二、抓住概念定义中的关键字词,逐个突破,强化对概念的理解在高中数学概念的定义中,一般都会有关键的字词,它们是概念的灵魂所在。抓住了它们,就能把握住整个概念,并能深化我们对概念的理解。在教学过程中,教师应要求学生自己去寻找到其定义中的关键字词,并认真加以揣摩,体会。如集合的定义是:一定范围内某些确定的、不同的对象的全体构成一个集合。集合是学生在高中数学中接触到的第一个概念。学生容易发现其中的关键词是确定的,不同的。

6、这两个词正好对应到集合中的两个性质,即确定性和互异性。又如函数的定义是:两个非空的数集A,B,若按某种对应法则f,对于A中的每一个元素x,在集合B中都有唯一的元素y与之对应,这样的对应就称之为是从A到B的一个函数。教学时要引导学生发现定义中的关键词是非空的数集、每一个、都有、唯一的。找到这些关键词后,就要对它们认真去分析,这些关键词理解到位了,可以说,函数的概念也就理解透彻了。即函数其实就是一种特殊的对应,一个输入值要对应到唯一的输出值,要么是“一对一”,或者是“多对一”,但不能是“一对多”。所以说,概念中的关键字

7、词抓住了之后,学生就理清了概念的脉络,不仅可以使我们轻松地记住整个定义,还可以吃透概念。三、开展类比教学,注意概念之间的比较,辨析高中数学中的不少概念之间,存在着紧密的联系。在学习这些概念时,我们要坚持用联系的观点去看问题。例如,在学习等比数列的定义时,应该要先回忆等差数列的定义,即一个数列从第二项起,后一项与前一项的差是同一个常数,这个常数就叫做等差数列的公差。注意到等比数列和等差数列这两个概念就相差一个字,它们的定义也应该相差无几。类比之后,可以让学生自己尝试给出等比数列的定义。接着,等比数列的性质也应类比等差

8、数列由学生自主去发现。通过辨析,明确了两者之间的异同,学生自然会对此印象深刻,不易遗忘。此外,教材上的映射和函数,双曲线和椭圆,几何概型和古典的概型,指数和对数,平面向量和空间向量等,都应拿来做比较,这也体现了数学上将未知转化为已知,将陌生转化为熟悉的思除了将数学教材上的概念来进行对比之外,有时可以跨学科来进行比较。在学习向量的概念时,可以告诉学生,数学上的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。