欢迎来到天天文库
浏览记录
ID:22209201
大小:163.50 KB
页数:6页
时间:2018-10-27
《由递推公式求通项公式的几种基本类型[1]》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、WORD文档下载可编辑网课7:由递推公式求通项公式的几种基本类型求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法mw.w.w.k.s.5.u.c.o例1在数列{}中,,,求通项公式.解:原递推式可化为:则,……,逐项相加得:.故.二、作商求和法例2设数列{}是首项为1的正项数列,且(n=1,2,3…),则它的通项公式是=▁▁▁(2000年高考15题)解:原递推式可化为:=0∵>0,则……,逐项相乘得:,即=.三、换元法例3已知数列{},其中,且当n
2、≥3时,,求通项公式(1986年高考文科第八题改编).解:设,原递推式可化为:专业技术资料分享WORD文档下载可编辑是一个等比数列,,公比为.故.故.由逐差法可得:.例4已知数列{},其中,且当n≥3时,,求通项公式。解由得:,令,则上式为,因此是一个等差数列,,公差为1.故.。由于又所以,即四、积差相消法例5(1993年全国数学联赛题一试第五题)设正数列,,…,,…满足=且,求的通项公式.解将递推式两边同除以整理得:设=,则=1,,故有⑴⑵…………()由⑴+⑵+…+()得=专业技术资料分享WORD文档下载可编辑,即=.逐项相乘得:=,考虑到,故.五、取倒数法例6已
3、知数列{}中,其中,且当n≥2时,,求通项公式。解将两边取倒数得:,这说明是一个等差数列,首项是,公差为2,所以,即.六、取对数法例7若数列{}中,=3且(n是正整数),则它的通项公式是=▁▁▁(2002年上海高考题).解由题意知>0,将两边取对数得,即,所以数列是以=为首项,公比为2的等比数列,,即.七、平方(开方)法例8若数列{}中,=2且(n),求它的通项公式是.解将两边平方整理得。数列{}是以=4为首项,3为公差的等差数列。。因为>0,所以专业技术资料分享WORD文档下载可编辑。八、待定系数法待定系数法解题的关键是从策略上规范一个递推式可变成为何种等比数列,
4、可以少走弯路.其变换的基本形式如下:1、(A、B为常数)型,可化为=A()的形式.例9若数列{}中,=1,是数列{}的前项之和,且(n),求数列{}的通项公式是.解递推式可变形为(1)设(1)式可化为(2)比较(1)式与(2)式的系数可得,则有。故数列{}是以为首项,3为公比的等比数列。=。所以。当n,。数列{}的通项公式是。2、(A、B、C为常数,下同)型,可化为=)的形式.例10在数列{}中,求通项公式。解:原递推式可化为:专业技术资料分享WORD文档下载可编辑①比较系数得=-4,①式即是:.则数列是一个等比数列,其首项,公比是2.∴即.3、型,可化为的形式。例
5、11在数列{}中,,当,①求通项公式.解:①式可化为:比较系数得=-3或=-2,不妨取=-2.①式可化为:则是一个等比数列,首项=2-2(-1)=4,公比为3.∴.利用上题结果有:.4、型,可化为的形式。例12在数列{}中,,=6①求通项公式.解①式可化为:②专业技术资料分享WORD文档下载可编辑比较系数可得:=-6,,②式为是一个等比数列,首项,公比为.∴即故.专业技术资料分享
此文档下载收益归作者所有