欢迎来到天天文库
浏览记录
ID:22153474
大小:96.00 KB
页数:10页
时间:2018-10-27
《三角函数诱导公式教案2》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、三角函数诱导公式教案2 1教材分析 1.1教材的地位与作用 本节课教学内容“诱导公式(二)、(三)”是人教版《高中代数》上册第二章§2.6节内容.它既是学生已学习过的三角函数定义、诱导公式(一)等知识的延续和拓展,又是推导诱导公式(四)、(五)的理论依据.是本章“任意角的三角函数”一节及全章中起着承上启下作用的重要纽带.求三角函数值是三角函数中的重要内容.诱导公式是求三角函数值的基本方法.诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90”角的三角函数值问题,诱导公式的推导过程,体现了数
2、学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式.这对培养学生的创新意识、发展学生的思维能力、掌握数学的思想方法具有重大的意义 1.2教学重点与难点 1.2.1教学重点 诱导公式的推导及应用 1.2.2教学难点 相关角终边的几何对称关系及诱导公式结构特征的认识. 2目标分析 根据教学大纲的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,本节课的教学目标如下 2.1知识目标 1)识记诱导公式. 2)理解和掌握公式的内涵及结构特征,会
3、初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明. 2.2能力目标 1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法. 2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式. 3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力. 2.3情感目标 1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神. 2)通过归纳思维的训练,培养学生踏实细
4、致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想. 3过程分析 3.1创设问题情境,引导学生观察、联想,导入课题 1)提问:三角函数定义、诱导公式(一)及其结构特征. 2)板书:诱导公式(一). sin(k·360°+α)=sinα,cos(k·360°+α)=cosα. tan(k·360°+α)=tanα,cot(k·360°+α)=cotα(k∈Z) 结构特征:①终边相同的角的同一三角函数值相等. ②把求任意角的三角函数值问题转化为求0°~360°角的三角函
5、数值问题. 教学设想通过提问让学生温习、重视已有相关知识,为学生学习新知识作铺垫. 3)学生练习:试求下列三角函数值 sin1110°,sin1290°. 教学设想由已有知识导出新的问题,为学习新知识创设问题情境,以引起学生学习需要和学习兴趣,激发学生的求知欲,启迪学生思维的火花. 4)介绍单位圆概念后,引导学生观察演示(一)并思考下列问题: ①210°能否用(180°+α)的形式表达(0°<α<90°)?(210°=180°+30°) ②210°与30°角的终边位置关系如何?(互为反向延长线
6、或关于原点对称) ③设210°,30°角的终边分别交单位圆于点P,P',则点P与P'的位置关系如何?(关于原点对称) ④设点P(x,y),则点P'的坐标怎样表示?[P'(-x,-y)] ⑤sin210°与sin30°的值的关系如何? 教学设想通过微机动态演示,引导学生发现210°与30°角的终边及其与单位圆交点关于原点对称关系,借助三角函数定义,寻找sin210°与sin30°值的关系,达到转化为求0°~90°角三角函数值的目的. 学生通过主动探索、发现解决问题的途径,体验和领会数形结合与归纳转化
7、的数学思想方法. 5)导入课题 对于任意角α,sinα与sin(180°+α)的关系如何呢?试说出你的猜想. 3.2运用迁移规律,引导学生联想、类比、归纳、推导公式 1)引导学生观察演示(二)并思考下列问题: ①α与(180°+α)角的终边关系如何?(互为反向延长线或关于原点对称) ②设α与(180°+α)角的终边分别交单位圆于点P,P',则点P与P'位置关系如何?(关于原点对称) ③设点P(x,y),那么点P'的坐标怎样表示?[P'(-x,-y)] ④sinα与sin(180°+α),co
8、sα与cos(180°+α)关系如何? ⑤tanα与tan(180°+α),cotα与cot(180°+α)关系如何? ⑥经过探索,你能把上述结论归纳成公式吗?其公式特征如何? 2)板书诱导公式 sin(180°+α)=-sinα,cos(180°+α)=-cosα, tan(180°+α)=tanα,cot(180°+α)=cotα. 结构特征:①函数名不变,符号看象限(把α看作锐角时). ②把求
此文档下载收益归作者所有