欢迎来到天天文库
浏览记录
ID:22137937
大小:97.37 KB
页数:8页
时间:2018-10-27
《线段的垂直平分线与角平分线专题复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、线段的垂直平分线与角平分线专题复习知识点复习:1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,∵CD⊥AB,且AD=BD∴AC=BC.定理的作用:证明两条线段相等(2)线段关于它的垂直平分线对称.2、线段垂直平分线的判定定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,∵AC=BC∴点C在线段AB的垂直平分线m上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于线段垂直平分线性质定理的推论(1)关于三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点,并且这一点到
2、三个顶点的距离相等.性质的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,也成立。4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵OE是∠AOB的平分线,F是OE上一点,且CF⊥OA于点C,DF⊥OB于点D,∴CF=DF.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对称图形,它的对称轴是
3、角平分线所在的直线.5、角平分线性质定理的逆定理:角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上.定理的数学表示:如图5,∵点P在∠AOB的内部,且PC⊥OA于C,PD⊥OB于D,且PC=PD,∴点P在∠AOB的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线6、关于三角形三条角平分线的定理:(1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP、BQ、CR分别是△ABC的内角∠BAC、∠ABC、∠ACB的平分线,那么:①AP、BQ、CR相交于一点I;②若ID、I
4、E、IF分别垂直于BC、CA、AB于点D、E、F,则DI=EI=FI.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.精品习题:1.在△ABC中,∠C=90º,BD是∠ABC的平分线.已知,AC=32,且AD:DC=5:3,则点D到AB的距离为_______.2
5、.如图,在△ABD中,AD=4,AB=3,AC平分∠BAD,则=()A.B.C. D.不能确定3.如图,ΔABC的三边AB、BC、CA的长分别是20、30、40、其中三条角平分线将ΔABD分为三个三角形,则S:S:S等于______.4.如图所示,∠BAC=105°,若MP和NQ分别垂直平分AB和AC.则∠PAQ的度数为.5.AD∥BC,∠D=,AP平分∠DAB,PB平分∠ABC,点P恰好在CD上,则PD与PC的关系是()A.PD>PCB.PD6、市应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在AC、BC两边垂直平分线的交点处D.在∠A、∠B的角平分线的交点处7.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25ºB.30ºC.45ºD.60º8.AC=AD,BC=BD,则有( )A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB9.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是( )A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP17、0.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。A、1 B、2 C、3 D、411.在Rt△ABC中,∠A=90°,AB=3,AC=4,∠ABC,∠ACB的平分线交于P点,PE⊥BC于E点,求PE的长.12.如图,△BDA、△HDC都是等腰直角三角形,且D在BC上,BH的延长线与
6、市应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在AC、BC两边垂直平分线的交点处D.在∠A、∠B的角平分线的交点处7.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25ºB.30ºC.45ºD.60º8.AC=AD,BC=BD,则有( )A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB9.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是( )A.PA=PBB.PO平分∠APBC.OA=OBD.AB垂直平分OP1
7、0.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路(如图所示),建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有( )处。A、1 B、2 C、3 D、411.在Rt△ABC中,∠A=90°,AB=3,AC=4,∠ABC,∠ACB的平分线交于P点,PE⊥BC于E点,求PE的长.12.如图,△BDA、△HDC都是等腰直角三角形,且D在BC上,BH的延长线与
此文档下载收益归作者所有