资源描述:
《梯形常用辅助线的做法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、word资料下载可编辑梯形常用辅助线的做法常见的梯形辅助线基本图形如下:1.平移梯形一腰或两腰,把梯形的腰、两底角等转移到一个三角形中,同时还得到平行四边形.【例1】已知:如图,在梯形ABCD中,.求证:.专业技术资料word资料下载可编辑分析:平移一腰BC到DE,将题中已知条件转化在同一等腰三角形中解决,即AB=2CD.证明:过D作,交AB于E. ∵AB平行于CD,且, ∴四边形是菱形. ∴ 又 ∴为等边三角形. ∴ 又, ∴∴.【例2】如图,在梯形ABCD中,AD∥BC,E、F分别是AD、BC的中点,若.AD=7,BC=15
2、,求EF.分析:由条件,我们通过平移AB、DC;构造直角三角形MEN,使EF恰好是△MEN的中线. 解:过E作EM∥AB,EN∥DC,分别交BC于M、N,∵,专业技术资料word资料下载可编辑 ∴ ∴是直角三角形,∵,, ∴. ∵、分别是、的中点,∴为的中点,∴.变式:如图1,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范围。图1析解:过点B作BM//AD交CD于点M,则梯形ABCD转化为△BCM和平行四边形ABMD。在△BCM中,BM=AD=4,CM=CD-DM=CD-AB=8-3=5,所以BC的取值范围
3、是:5-44、AD=2,BC=5,求CD的长。图5析解:延长BA、CD交于点E。在△BCE中,∠B=50°,∠C=80°。所以∠E=50°,从而BC=EC=5同理可得AD=ED=2专业技术资料word资料下载可编辑所以CD=EC-ED=5-2=3变式2:如图所示,四边形ABCD中,AD不平行于BC,AC=BD,AD=BC.判断四边形ABCD的形状,并证明你的结论.变式3:(延长两腰)如图,在梯形中,,,、为、的中点。 3.从梯形上底的两端向下底引垂线作高,可以得到一个矩形和两个直角三角形.然后利用构造的直角三角形和矩形解决问题.例4.如图,在梯
5、形中,.求证:.专业技术资料word资料下载可编辑分析:过上底向下底作两高,构造Rt△,然后利用两三角形全等解决问题.证明:分别过D、C、作AB的垂线,垂足分别为E、F. ∵, ∴. 又, ∴≌.∴变式:如图7,在直角梯形ABCD中,AB//DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF//AB,交AD于点E,求证:四边形ABFE是等腰梯形。图7析证:过点D作DG⊥AB于点G,则易知四边形DGBC是矩形,所以DC=BG。因为AB=2DC,所以AG=GB。从而DA=DB,于是∠DAB=∠DBA。又EF//A
6、B,所以四边形ABFE是等腰梯形。如图8,在梯形ABCD中,AD为上底,AB>CD,求证:BD>AC。图8析证:作AE⊥BC于E,作DF⊥BC于F,则易知AE=DF。在Rt△ABE和Rt△专业技术资料word资料下载可编辑DCF中,因为AB>CD,AE=DF。所以由勾股定理得BE>CF。即BF>CE。在Rt△BDF和Rt△CAE中由勾股定理得BD>AC4.平移对角线一般是过上底的一个端点作一条对角线的平行线,与另一底的延长线相交,得到一个平行四边形和三角形,把梯形问题转化为平行四边形和三角形问题解决.【例5】.如图,等腰梯形中,,,且,是高,是
7、中位线,求证:.分析:由梯形中位线性质得,欲证,只要证.过点作,交的延长线于,就可以把、和移到三角形中,再证明等式成立就简单多了.证明:过点作交的延长线于点,则四边形是平行四边形.∴,∵四边形是等腰梯形,∴,∴又∵,∴,∴, ∴.∵,专业技术资料word资料下载可编辑∴又∵,∴.【例6】.已知:如图,在梯形中,.求证:梯形是等腰梯形.证明:过D作,交BA延长线于E.则四边形是平行四边形.∴.∴又,∴于是,可得∴∴梯形ABCD是等腰梯形.变式1:如图3,在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=,求证:AC⊥BD。图3析解:专
8、业技术资料word资料下载可编辑过点C作BD的平行线交AD的延长线于点E,易得四边形BCED是平行四边形,则DE=BC,CE=BD=,所以AE=AD+