小学数学教学中如何培养学生的抽象思维能力(马蒙清)

小学数学教学中如何培养学生的抽象思维能力(马蒙清)

ID:22107463

大小:36.00 KB

页数:6页

时间:2018-10-27

小学数学教学中如何培养学生的抽象思维能力(马蒙清)_第1页
小学数学教学中如何培养学生的抽象思维能力(马蒙清)_第2页
小学数学教学中如何培养学生的抽象思维能力(马蒙清)_第3页
小学数学教学中如何培养学生的抽象思维能力(马蒙清)_第4页
小学数学教学中如何培养学生的抽象思维能力(马蒙清)_第5页
资源描述:

《小学数学教学中如何培养学生的抽象思维能力(马蒙清)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、WORD文档下载可编辑小学数学教学中如何培养学生的抽象思维能力红河州蒙自市新安所镇中心学校马蒙清2011年12月20日专业技术资料分享WORD文档下载可编辑小学数学教学中如何培养学生的抽象思维能力红河州蒙自市新安所镇中心学校马蒙清2011年12月20日专业技术资料分享WORD文档下载可编辑小学数学教学中如何培养学生的抽象思维能力   内容提要:数学的抽象决定了数学可以培养学习者的抽象能力,也决定了学习者必须具有一定的抽象能力。从一道道具体的应用题到常见的数量关系,从一道道具体的计算题到计算法则,从具体的数到一个个字母等无一不是抽象的过程。教材的编排体现了这样一

2、个由具体到抽象的过程。新课程标准在“数学思考”方面提出了“经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维”和“丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维”的目标。在新课程教材使用的过程中因为直观操作强调较多,有时则忽视了抽象的过程与结果,对由形象到抽象的过程认识与研究不够,从而实践上很不到位。本文试从小学数学课堂中,谈谈如何培养学生的抽象思维能力,表达自己一些粗浅看法。  关键词:小学生;小学数学; 抽象思维; 培养途径  在新课程教材使用的过程中因为直观操作强调较多,有时则忽视了抽象的过程与结果,对由形象到抽

3、象的过程认识与研究不够,从而实践上很不到位。深入课堂还可以发现常态下的数学课堂呈现出这样一种普遍现象:低年级的课堂适当的抽象不够,中、高年级的课堂直观操作不够,抽象太早。我们知道一二年级学生以具体形象思维为主,三、四年级学生的抽象思维能力逐步提高,五、六年级学生的抽象思维能力在继续发展,但学生的思维还是要靠形象来支撑。下面我通过身边的一则教学事例,来诊断和探讨:如何在小学数学中学生抽象思维能力的培养。  教学事例:到一年级数学组走走,听老师们说前一天有老师已经教学了两位数加整十数、一位数的计算,上完课的老师反映学生对两类加法容易混淆,学生掌握得不好。于是我便和

4、老师们一起分析:学生头脑中还没有“几个十和几个十相加,几个一和几个一相加”,即“相同计数单位的数相加”的知识,教师在教学时也不能空洞、抽象地告诉学生“几个十要和几个十相加,几个一要和几个一相加”。那怎样变教师的告诉为学生的体悟呢?对策:在主题图教学之后分四步走,帮助学生辨别两类题,休会“相同计数单位的数相加”。第一步:让学生在计数器上拨珠计算,用计数器帮助对比、区分,如25+20,25+2,44+50,44+5,等等。第二步:只拨第一个加数,想加第二个加数的拨珠动作,再说出得数。第三步:计数器拿走,想象两数相加的拨珠动作,再说出得数。第四步:看算式直接说出得数

5、。其他教师在教学中均采用了这样的四步,先教的那位专业技术资料分享WORD文档下载可编辑老师也用这四步进行了补救,效果明显提高,学生基本上没有错误。  新课程教材的使用使得教师们对于问题情境的创设、对于问题解决的方法的多样化非常注重,但是带来的问题是忽视了对学生思维的关注和研究,忽视了学生思维的循序渐进过程,比如形象思维向抽象思维的发展。教学事例中提到的两位数加一位数、整十数的教学中,当先教的那位教师发现学生错误较多时便反复告诉学生要把几个十和几个十相加、几个一和几个一相加,而学生要理解这样一句话本身就有难度。反之,用后面提出的四步进行,第一步让学生在计数器的拨

6、珠计算两种加法,是借助动作进行思维,是最容易、最低级的。第二步只拨一个加数,想加第二个加数的拨珠动作,再说出得数。这两步既有具体的动手操作,又有表象思维的成分,比前者要求略高。第三步计数器拿走,想象两数相加的拨珠动作,再说出得数。想象两数相加的拨珠动作,关键是想若加4的话4应该加在哪位,若加40的话4应该加在哪位,有前两步的基础,学生这一步的想象一般不会出错,答案基本正确。第四步看算式直接说出得数。这四步可以是小步子前进,思维由动作到半动作半表象再到表象思维最后到抽象思维,由易到难,循序渐进,拾级而上。  在小学阶段有大量的计算教学,如何由算理的直观上升到算法

7、的抽象应该是计算教学中永远要研究的主题。从认识过程来看,学生对问题的思考和解决通常分为两个阶段:感性认识和理性认识阶段。感性认识,即形成感觉、感知和表象的阶段,是对事物的认识的低级阶段。理性阶段,即对表象进行概括和抽象而形成概念的阶段。表象是感知的保存和再现,表象是感性认识和理性认识的中介和桥梁。在案例一和教学事例中我们都用到了表象思维,它促进了形象思维向抽象思维的跨越与提升。  数学的抽象决定了数学可以培养学习者的抽象能力,也决定了学习者必须具有一定的抽象能力。从一道道具体的应用题到常见的数量关系,从一道道具体的计算题到计算法则,从具体的数到一个个字母等无一

8、不是抽象的过程。教材的编排出体现了这样

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。