资源描述:
《全等三角形判定sss》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§11.2三角形全等的条件(一)1、全等三角形的定义能够完全重合的两个三角形叫全等三角形。2、全等三角形有什么性质?知识回顾问题1:其中相等的边有:问题2:其中相等的角有:AB=DE,BC=EF,AC=DF∠A=∠D,∠B=∠E,∠C=∠F如图,已知△ABC≌△DEFABCDEF(全等三角形的对应边相等)(全等三角形的对应角相等)3.在△ABC与△A'B'C'中,若AB=A'B',BC=B'C',AC=A`C`,∠A=∠A',∠B=∠B',∠C=∠C',那么△ABC与△A'B'C'全等吗?具备三条边对应相等,三个角对应相等的两个三角形全等ABCA'B'C'思考:要使两个三
2、角形全等,是否一定要六个条件呢?想一想满足下列条件的两个三角形是否一定全等:(1)一个条件(2)两个条件(3)三个条件一边一角两边一边一角两角三角三边两边一角两角一边8cm8cm满足下列条件的两个三角形是否一定全等:一边一角两边一边一角两角三角三边两边一角两角一边×(1)一个条件(2)两个条件(3)三个条件400400满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边××只有一个条件对应相等的两个三角形不一定全等。(1)一个条件(2)两个条件(3)三个条件3009cm3009cm3009cm3009cm3009cm满足下列条件的两个三角
3、形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边××只有一个条件对应相等的两个三角形不一定全等。×(1)一个条件(2)两个条件(3)三个条件300500300500满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边××只有一个条件对应相等的两个三角形不一定全等。××(1)一个条件(2)两个条件(3)三个条件8cm9cm8cm9cm满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边××只有一个条件对应相等的两个三角形不一定全等。×××只有两个条件对应相等的两个三角形不一定全等。(1)一个
4、条件(2)两个条件(3)三个条件65度35度80度65度35度80度满足下列条件的两个三角形是一定否全等:一边一角两边一边一角两角三角三边两边一角两角一边××只有一个条件对应相等的两个三角形不一定全等。×××只有两个条件对应相等的两个三角形不一定全等。×(1)一个条件(2)两个条件(3)三个条件8cm6cm9cm8cm6cm9cm满足下列条件的两个三角形是否一定全等:一个条件两个条件三个条件一边一角两边一边一角两角三角三边两边一角两角一边××只有一个条件对应相等的两个三角形不一定全等。×××只有两个条件对应相等的两个三角形不一定全等。×√结论:三边对应相等的两个三角形全等
5、.可简写为边边边或SSS如何用符号语言来表达呢?在△ABC与△DEF中ABCDEFAB=DEAC=DFBC=EF∴△ABC≌△DEF(SSS)例1已知:如图,AB=AD,BC=CD,求证:△ABC≌△ADCABCDACAC()≌AB=AD()BC=CD()∴△ABC△ADC(SSS)证明:在△ABC和△ADC中=已知已知公共边判断两个三角形全等的推理过程,叫做证明三角形全等。应用迁移,巩固提高例2.如下图,△ABC是一个钢架,AB=AC,AD是连接A与BC中点D的支架。求证:△ABD≌△ACD分析:要证明△ABD≌△ACD,首先要看这两个三角形的三条边是否对应相等。证明:
6、∵D是BC中点,∴BD=CD.AB=AC,BD=CD,AD=AD,∴△ABD≌△ACD(SSS).在△ABD和△ACD中,ACBD证明:∵D是BC的中点∴BD=CD在△ABD与△ACD中AB=AC(已知)BD=CD(已证)AD=AD(公共边)∴△ABD≌△ACD(SSS)例3如图,△ABC是一个钢架,AB=AC,AD是连接A与BC中点D的支架,求证:△ABD≌△ACD求证:∠B=∠C,∴∠B=∠C,图1例4:已知:如图1,AC=FE,AD=FB,BC=DE求证:△ABC≌△FDE证明:∵AD=FB∴AB=FD(等式性质)在△ABC和△FDE中AC=FE(已知)BC=DE(
7、已知)AB=FD(已证)∴△ABC≌△FDE(SSS)求证:∠C=∠E,AcEDBF==??。。(2)∵△ABC≌△FDE(已证)∴∠C=∠E(全等三角形的对应角相等)求证:DE∥BC思考已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=FB(如图),要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?解:要证明△ABC≌△FDE,还应该有AB=FD这个条件∵DB是AB与FD的公共部分,且AD=BF∴AD+DB=BF+DB即AB=DF归纳:①准备条